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General Introduction 

Carbon fiber reinforced composite (CFRC) represent an innovative technological 

solution for improving and creating more competitive products in various industrial sectors. 

CFRC stand out for their lightness in weight along with excellent mechanical strength. They are 

very often an innovative technological solution to improve or create products with more 

performance in many industrial areas. In advanced fields (nuclear, aerospace, etc.) requiring 

advanced technologies, high-performance composites are an undeniable asset. They are 

gradually replacing metals, leading to a continuous and large growth in the demand for the 

fibrous composite. The last few decades saw the developments of specific processes, especially 

the automated ones such as automated fiber placement (AFP), which satisfies the need for high 

production of CFRC with high quality and controlled properties. The quality of the final product 

depends not only on the behavior of the material at the scale of the composite but also at the 

scale of individual constituents such as fiber or interface of fiber/matrix and matrix itself. The 

evolution of the thermal environment of composite structures has an overall impact on the 

mechanical properties of the products. Therefore accurate thermal characterization of carbon 

fiber-reinforced composite is extremely crucial to predict its overall quality.  

In the present scenario, thermal studies on fibrous composites are gaining the interest of 

many industries. Each property of the composite, i.e. mechanical/chemical/physical, is strongly 

dependent on the temperature change. Subsequently, the exact prediction of temperature field is 

crucial to estimate the overall properties of the final part in a multi-physical approach. Thermal 

conductivity and volumetric heat capacity are the prime thermal properties in the study of 

fibrous composite. Moreover, each industry demands a specific role, for example, heat sinks 

presence at electronic industries or automotive electronic control unit, nuclear fusion reactors 

require high thermally conductive material contrary to the one used in construction or roof top 

of automotive with low thermal conductivity. Therefore this further increases the necessity of 

estimating the thermal property of each component for heat transfer prediction and/or 

calculation of homogenized property of the composite at the macroscale. In the last few 

decades, to estimate the effective properties, there is an increased growth in the approaches, 

experimental or numerical, for thermal property characterization, specifically thermal 

conductivity of the fibrous composite starting from micro to macro scale.  

The basic methodology for thermal conductivity measurement involves solving either 

steady state or transient heat transfer equation and estimating the thermal conductivity through 

direct measurement of temperature and/or heat flux. There is a wide research present not only 

on thermal conductivity but also on heat capacity and diffusivity measurement at the composite 

scale by methods such as hot guarded plate, flash method, AC calorimetry and many more.  

However, the challenge of working at the constituent level for CFRC involves the fibers at the 

scale of 5-8µm, where direct measurement of temperature is very difficult. Besides the thermal 

conductivity of carbon fiber can vary from 0.1 to 200 Wm-1K-1, according to its microstructure.  

This range of values requires the development of experimental methods for accurate 
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measurement of thermal properties of a single fiber. The challenge also comes from the 

anisotropy in the thermal conductivity of fibers. Few studies have systematically and accurately 

measured the thermal property for single fiber such as 3ω method, periodic heating technique, 

T-type probe heating method and AC calorimetry method. However, the radial thermal 

conductivity of the fiber is still a huge challenge to be fulfilled. Therefore, an experimental 

approach for the accurate measurement of thermal property encountering for the anisotropy is of 

significant importance.  

Furthermore, at the level of fibrous composite, the effective thermal property estimation 

is achieved through the numerical approach. In this method, to retrieve an internal 

microstructure that acts as the representative elementary volume (REV) at mesoscale remains an 

important research issue. This REV should mimic the thermal response of macroscale CFRC, 

where the required property is constant beyond this volume. Thus solving the partial differential 

equations on a strongly spatial heterogeneous medium using numerical approaches and then 

detecting the continuum at which the effective properties are constant is of high importance. 

Thus, the effective thermal property at the scale of REV can predict the thermal behavior of the 

composite.  

A direct application of the effective property estimation is on the thermal study of a 

prepreg tape placement process such as AFP in making complex shapes from CFRC. A prepreg 

tape is a laminating pre-engineered material (fibers are pre-impregnated by the polymer matric, 

thermoset or thermoplastic) for the manufacturing CFRC at macroscale. In the AFP process, the 

prepreg tape is heated at high speed by a laser and then subsequently pressed and cooled for 

bonding with the previously placed tape. This process involves many sub phenomena such as 

fusion, crystallization, void growth and etc. Each of these involved steps  are extremely thermal 

driven, therefore exact temperature prediction at the scale of a single tape is important as this 

will ultimately influence the interlayer bonding and ultimately the strength of the laminate. 

Commercial thermoplastic tapes are composed of PEEK matrix that acts as semi-

transparent material and AS4 carbon fiber that is opaque to the infrared wavelength. The 

microstructural images of such mesoscale CFRC have shown an intrinsically different 

distribution of the fibers. Therefore the investigation of REV at the scale of the tape is also very 

important. Previous research works widely based on the primary assumption of tapes acting as a 

homogenous material leading to the surface with laser heat projection having the highest 

temperature. It is crucial to verify this assumption for the exact prediction of the temperature in 

tapes. This can assist in a thorough quality assessment of the laminate after AFP manufacturing.  

In this thesis, the objective starts with the thermal characterization of single carbon 

fibers at the microscale. Although the interface of matrix/fiber is also important, it’s currently 

out of the scope of this thesis. The study of some REVs behavior is equally essential in order to 

understand the impact of local parameters on the global thermal response at the mesoscale.  

 

 

 



General Introduction 

3 
 

Thus, the central objectives of this thesis are: 

 

 At the microscale, the measurement of longitudinal and radial thermal conductivity and 

volumetric heat capacity of commercial PAN fibers using 3ω method.  

 At the mesoscale, the effective thermal conductivity tensor calculation of fibrous composite 

and the analysis of the effects of fiber distribution.  

 In an advanced manufacturing technique, AFP, the influence of microstructural 

heterogeneities (fiber distribution, thermal contact resistance) on the thermal behavior at the 

scale of single fiber.   

The manuscript is divided into four chapters, each contributing to one of the above 

mentioned points along with the literature reviews. Chapter 1 focuses on using 3ω method for 

simultaneous measurement of longitudinal thermal conductivity and volumetric heat capacity 

for single fiber. Chapter 2 concentrates on extending the applicability of the 3ω method for 

radial thermal conductivity measurement by implementing the results from the previous chapter. 

Chapter 3 is dedicated to the determination of the REV for a mesoscale fibrous composite and 

estimating the effective thermal conductivity. The presence of REV is verified for commercial 

tapes, such as Solvay and Suprem, which are crucial as advanced manufacturing technique like 

automated fiber placement (AFP). Chapter 4 investigates the thermal behavior of these 

composite tapes, during the AFP process. Each tape has a different distribution of fiber in the 

microstructure. Thus it helps to understand the influence of fiber distribution or the contact 

zones between tapes or with metallic substrate on the temperature prediction for each tape.  
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1. Introduction 

In the mid-20th century, the interest in carbon fibers was transformed when synthetically 

produced rayon were carbonized to produce carbon fibers for high thermal stress applications 

such as missiles[1]. In the current engineering scenario, carbon fibers reinforced composite have 

found a great place in many high performance industries such as aeronautics, automobile, textile 

and etc. These high technology industries require a deep knowledge of all the physical phenomena 

occurring in the composites at micro to macroscale.  A huge stack of research is present in the 

characterization of mechanical properties for the composites but rather less focus was given on 

the thermal properties. There has been a huge number of research works going on for developing 

different techniques for measuring the thermal properties such as thermal conductivity, thermal 

diffusivity and heat capacity at different scales[2–5]. For better thermal design of any phenomena 

involving fibrous composite, it is necessary to concentrate in measuring the effective properties, 

which is possible by the correct estimation of each properties at micro scale.   

The objective of this chapter concentrates on the measurement of axial thermal conductivity 

and volumetric heat capacity for a single carbon fiber. In the literature, there are few methods 

present on bundle of fibers such as laser flash method [6] or Angström method [7], or through 

single fiber such as T-type probe method [8] or AC calorimetry technique[9] which are described 

briefly in section 2.  

In this thesis, 3𝜔 method is used for estimation of axial thermal conductivity and 

volumetric heat capacity of the single fiber where the fiber itself acts as heater and sensor resulting 

in minimum uncertainty. It is a frequency based approach where an alternating current is passed 

through the sample and the resulting voltage fluctuations with frequency contains the information 

on thermal properties. A detailed description of the method is portrayed in the upcoming sections. 

A classical analytical model (section 3.1) is already present in the literature [10] which was used 

to retrieve the thermal properties of fiber by fitting the experimental data. But it comes with few 

assumption and pre-conditions (section 3.2) to satisfy the eligibility of analytical model to be 

successful. A numerical model taking into account lateral heat loss (section 3.3) is developed. 

Apart from this, previous research works on 3𝜔 method for fiber thermal conductivity 

measurement has only focused on the implementation of separate analytical models in lower and 

higher frequency range for estimation of either thermal conductivity or heat capacity. Therefore 

in this thesis a sensitivity analysis (section 4) of the measured voltage with respect to the unknown 

parameter over a wide frequency range (10-2 -104 Hz) is presented. It can help in fulfilling the 

objective of using single analytical model for the estimation of both axial thermal conductivity 

and volumetric heat capacity. In section 5, the experimental setup for 3𝜔 method is presented in 

details along with the uncertainty in the measurement (section 6). Lastly, this 3𝜔 method is used 

for estimation of the thermal conductivity and volumetric heat capacity of a chromel wire for 

validation purpose (section 7.1) and two types of PAN-based carbon fibers (section 7.2) and the 

effect of thermal contact resistance between sample and its holder is discussed in section 7.3.  
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1.1 Carbon Fibers 

Carbon fibers are basically made up of small graphite crystallites where the atoms at each 

layer are clinched with each other by a strong covalent bond. The layer itself exhibits a weak van 

der Waals force. The alignment of each layer decides the strength and modulus of the final carbon 

fiber (Figure 1.4). The intermolecular bonding varies depending on the precursor, which is the 

main classifying factors for different types of fiber. Different precursors used in large scale 

production are poly-acrylonitrile (PAN), rayon and pitch based. These precursors are carbonized 

to get the final form of different fiber types (Figure 1.5). Depending on the nature of the precursor 

used, the texture of the atomic planes has a range and a variable orientation that govern their 

properties.  

 

 

Figure 1.1: Different textures at the cross-section of a carbon fiber[11] (a) isotropic (b) radial 

(c) layered (d) onion shaped 

  

Figure 1.2: Microstructure image by scanning electron microscopy (a) PAN (b) 

Pitch (c) Rayon precursor [1] 

The carbon fibers are produced in different conditions from different precursors, but the 

basic steps are the same. This involves the pyrolysis of stabilized precursor fibers, which are 

produced by oxidizing the precursors in the air at 200-400°C. These stabilized fibers are passed 

through treatment at a high temperature of 1000°C in an inert atmosphere. This step is known as 

carbonization where it removes nitrogen, oxygen, hydrogen and other elements that are non-

carbonic. They are further treated at 3000°C to increase the carbon content and achieve higher 

Young’s modulus. This produces carbon with a  relatively inert surface, which is later post treated 

to help in the adhesive capacity of these fibers to the matrix [12].  

Carbon fibers from different precursor exhibit different properties. Even though the 

production cost of PAN-based fibers is higher than the rayon, however PAN display twice the 

c a b 

(a) (b) (c) (d) 



Chapter 1: Measurement of axial thermal conductivity for single carbon fibers 

8 

 

carbon yield in comparison with the rayon based. The pitch-based carbon fibers could produce a 

higher tensile modulus fiber, but higher strength of the PAN fibers lead to the growth in the 

interest of multiple industrial on PAN precursor. Therefore currently PAN-based carbon fibers 

are the dominating precursor that is being used 96% of the overall carbon fiber market[13].   

2. Literature Review 

The general concept behind the measurement of thermal properties involves the 

observation of temperature response to any change in the boundary condition. As this change 

results in a disequilibrium in the system and the attempt of the particular system to come back to 

equilibrium contains the information for the thermal properties. But the estimation of thermal 

conductivity for a single fiber comes with lots of difficulties such as the small size, uncertainty, 

influence of any external disturbance and many more. In the past three decades, researchers have 

done many attempts for measuring the thermal conductivity, mostly axial thermal conductivity of 

the fiber. The studies can be grouped with samples made of bundle of fibers or a single fiber, 

steady or unsteady state measurements.  

2.1 Thermal conductivity measurement techniques for single fiber 

In this section, the techniques that are widely intriguing in the community of researcher for 

measuring the axial thermal conductivity are being discussed. Table 1 shows various techniques 

in nutshell along with the heating method, detection techniques, samples that are being used.  

 

 

Table 1: Literature survey on different methods used for thermal property measurement of 

carbon fiber 

 

Method Heating Method Temperature sensor Sample Type 
Reference 

 

Angstr𝐨̈m Method 

 

Constant DC current 

heater (Joule Heating) 
Thermocouples Fiber Bundle [7] 

Laser Flash Method Short Laser Pulse IR sensor Fiber Bundle [6] 

Thermal 

Potentiometer 

Constant DC heater 

(Joule Heating) 
Thermocouples Fiber Bundle [7] 

AC Calorimetery Halogen Lamp Thermocouple Single Fiber [9] 

T-Type Probe 

Method  

Constant DC heater 

(Joule Heating) 
Hot wire  Single Fiber [8] 

Periodic heating 

technique 
Argon Laser Beam IR sensor Single Fiber 

[14][15]  

 

Transient electro 

thermal method 

Constant DC heater 

(Joule Heating) 
Sample dependent Single Fiber [16] 

3𝛚 Method 

 

AC power supply 

heater (Joule Heating) 

Sample dependent. 

 
Single Fiber [10] 
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Table 2: Axial thermal conductivity and thermal diffusivity values of carbon fiber from 

literature. (*RT= Room temperature) 

Table 2 shows the type of fiber that are being used and the range of the axial thermal 

conductivity that has been measured by different methods described below. 

 Angström method: In Angström method, the fiber is periodically heated and it 

uses the decreasing temperature wave amplitude with the distance to measure the thermal 

diffusivity of the sample (fiber bundle). A function generator is used as heat source with 

thermal wave at one end of the sample. At two different locations on the sample, the 

temperature is measured either by thermocouple or infra-red temperature sensors. The 

temperature difference measured at these two points at different lengths from the source 

(∆𝑇1, ∆𝑇2) and the thermal time delay ∆𝑡 from wave reaching from one point to another 

one with a gap of 𝐿 will contain the data for thermal diffusivity[7]. Figure 1.3 helps us in 

understanding the basic concept of this method[17].  

𝛼𝑡 =
𝐿2

2 ∆𝑡 ln (∆𝑇1/∆𝑇2)
 (1.1) 

 

 

Figure 1.3 Schematic diagram of Angstr𝒐̈m method 

Carbon Fiber Commercial 

Reference 

Therm. 

Cond/W

m-1K-1 

Therm. 

Diff/mm2s-

1 

Temp. 

range/K 

Method Reference 

PAN Based 

IM7 

M55J 

UKY 

PANEX 33 

AS4 

IM10 

- 

- 

- 

- 

6.5 

6.9 

7.48 

81.15 

5.91 

15-20 

- 

- 

RT* 

RT 

RT 

850-1250 

RT 

RT 

Laser flash 

Laser flash 

Laser flash 

Periodic heating 

3𝜔 Method 

3𝜔 Method 

[6] 

[6] 

[6] 

[15] 

[11] 

[11] 

Pitch Based 

K1100 

P100 

- 

- 

- 

490 

415.17 

85-45 

- 

RT 

750-1875 

RT 

Laser flash 

Periodic heating 

T-type 

[6] 

[15] 

[7] 

Rayon Based TC2 
5-

12.5 
- 850-1800 Periodic heating [15] 

Lignin  

Based 
- 

0.1-

2.63 
- 10-300 

Transient electro 

thermal technique 
[16] 

∆𝑇1 

∆𝑇2 

𝐿 
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 Laser flash method: The laser flash analysis is a time dependent method. In this 

method a sample, i.e., a bundle of fiber with a thickness of 𝑏𝑏𝑢𝑛𝑑𝑙𝑒, placed in a 

temperature and atmosphere controlled environment (Figure 1.4). One side of the sample 

is subjected to sudden burst of heat from a short laser pulse and infra-red sensors are 

placed to monitor the temperature as a function of time. The time taken for the cold face 

to have a rise of half the equilibrium temperature i.e. the half rise time (𝑡1/2) contains the 

information about thermal diffusivity and then the thermal conductivity can be measured 

by knowing the heat capacity and density[6].  

𝛼𝑡 = 0.1388 ∗ 𝑏𝑏𝑢𝑛𝑑𝑙𝑒
2 /𝑡1/2 (1.2) 

 

 
Figure 1.4: Schematic diagram of laser flash method 

 AC calorimetry: This method was classically used for measurement of thermal 

diffusivity for thin films[18][19]. Later on it was implemented for the measurement of 

thermal diffusivity of a single fiber. In this technique, an oscillatory heat flux is projected 

by a tungsten halogen lamp at frequency 𝑓 on one section of the sample and ultimately 

generation of AC temperature wave passing to the other section of the sample that is not 

being heated by the lamp. This results in decay of the AC temperature wave amplitude 

which can be represented by decay constant (𝑒𝑑𝑒𝑐𝑎𝑦), which contains the data about the 

thermal diffusivity of the fiber[9]. The heat capacity was measured externally with the 

help of differential scanning calorimeter and then later the value of thermal conductivity 

for that particular fiber was extracted using.   

𝛼𝑡 = 𝜋𝑓/𝑒𝑑𝑒𝑐𝑎𝑦 (1.3) 

 

 

Figure 1.5: Schematic diagram of AC calorimetry 

 Thermal potentiometer: It is a steady state method which aims to set up a uniform 

temperature gradient throughout the sample (fiber bundle). Similar to the guarded hot 

plate method a set of guard heaters are used to minimize heat losses by convection and 
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radiation from the sample heater and the thermocouples and thus maintaining the sample 

with a uniform temperature gradient. The heating of the sample by the heat supply will 

set up a thermal gradient within the sample which is then measured by thermocouples at 

different locations on the sample. These data along with the knowledge of power 

dissipation and cross sectional area of the sample is used to calculate the thermal 

conductivity of the sample. Although it has the ability of measuring thermal conductivity 

at various temperature[7] but the main drawback of this method is the time taken to obtain 

a measurement as we need to wait for the thermal gradient to become uniform.  

        

 T-type probe method: It is a steady state where a hot wire placed between two 

heat sinks is used as both a constant heat source as well as a thermometer. Figure 1.6 

shows the basic principle behind T-type probe technique[8]. A hot wire is carefully 

selected with its electrical and thermal properties being known and an electric current is 

sent through it. It tends to have a parabolic temperature profile with maximum value at 

the center of the wire. The sample is then placed in the middle of the hot wire with another 

end of the sample attached to another heat sink. The temperature profile in the hot wires 

is changed due to the disruption in heat flow by the fiber in contact. In the article of Wang 

et al., he explained how this change in the temperature profile of the wire from the initial 

case of without the fiber contain the information about the thermal conductivity of the 

fiber [20][21]. The equation for deriving the thermal conductivity of the fiber is as 

follows: 

𝑘 =
𝑙𝑓𝑙ℎ𝑘ℎ𝑆ℎ(𝑙ℎ

2𝐼𝑉 − 12𝑙ℎ𝑘ℎ𝑆ℎ∆𝑇𝑙  )

𝑙ℎ1𝑙ℎ2𝑆𝑓(12 𝑙ℎ
2𝑘ℎ𝑆ℎ∆𝑇𝑙 − 𝐼𝑉(𝑙ℎ1

3 + 𝑙ℎ2
3 ))

 
(1.4) 

Where subscript f denotes for fiber and h denotes for hot wire, l is the length, S is the 

cross section area, I is the current and V is the voltage, ∆𝑇𝑙 is the changed temperature 

rise in the hot wire due to fiber. Issues tend to arise when measuring conductivities of thin 

individual fibers projected to high temperature of heat since they are susceptible to large 

heat losses in the form of convection and radiation.  

 

Figure 1.6: Schematic diagram of T-type probe method 



Chapter 1: Measurement of axial thermal conductivity for single carbon fibers 

12 

 

 Periodic heating technique: In the article of Pradere[22][14], a frequency 

dependent periodic technique was used to measure the thermal conductivity of individual 

fibers (Figure 1.7). The single fiber of type PAN, pitch, rayon based, is initially heated 

by Joule effect and then an Argon laser beam is projected on the surface of the fiber and 

which results in periodic thermal excitation. With the help of a lens, a splitting prism and 

an objective, the laser beam is focalized on such small surface of the fiber. The 

temperature response is analyzed by an IR sensor. The phase shift between the++ and the 

magnitude of the response can be measured by the lock-in amplifier at multiple 

frequencies and position of the sensor. The modulated part of the signal contains the data 

related to diffusivity. A 1D direct analytical model was developed for the experimental 

setup giving the fluctuating part of temperature∆𝑇̃ and phase∅ as 

log(∆𝑇̃) = −𝛾𝑟𝑧̂ + log (𝐾1∆𝑇𝑠) (1.5) 

∅ = −𝛾𝑖𝑧̂ + 𝑎𝑟𝑐𝑡𝑔 (
1 + 𝐾2𝐾3
𝐾2 − 𝐾3

) 
(1.6) 

Where 𝛾 = √
ℎ0𝑝

𝑘𝑆
+ 𝑖

𝜔

𝑎
= 𝛾𝑟 + 𝛾𝑖 and 𝐾1, 𝐾2, 𝐾3 are different functions of 𝛾𝑟 and 

𝛾𝑖. ℎ0 is heat losses coefficient, 𝑝 is the perimeter, S is the surface area of fiber, k 

is the thermal conductivity, 𝜔 = 2𝜋𝑓. Different minimization approaches were 

used to estimate the value of thermal diffusivity. In another article[23], similar 

experimental setup was used to solve the value of heat capacity. Through the data 

of diffusivity and heat capacity, the thermal conductivity of different fiber was 

estimated.  

 

Figure 1.7: Schematic diagram of periodic heating technique 

 Transient electro thermal method: In the transient electro thermal (TET) method, 

a step current is passed through single fiber of length L (Figure 1.8). Due to Joule heating 

effect, the temperature increases and ultimately depending on the material it will change 

the electric resistance of the sample and ultimately the voltage of the sample will have a 

decreasing profile with time t. With the oscilloscope, the voltage is monitored and by its 

evolution ((𝑉(𝑡) − 𝑉0)/(𝑉(𝑡 → ∞) − 𝑉0)) the normalized temperature rise can be 
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obtained. 𝑉0 is the initial voltage and 𝑉(𝑡 → ∞) is the steady state voltage over the 

sample; Fitting the experimental data of the sample with the analytical model (Eq. 1.7) 

developed in the article of Liu et al. gives its thermal diffusivity (𝛼𝑒𝑓𝑓)[16].  

∆𝑇∗ =
96

𝜋4
∑

1− 𝑒𝑥𝑝[−(2𝑚 − 1)2𝜋2𝛼𝑒𝑓𝑓𝑡/𝐿
2]

(2𝑚 − 1)4

∞

𝑚=1

 
(1.7) 

 

 

Figure 1.8: Schematic diagram of TET method 

Although these techniques have widely focused on thermal characterization of the single 

fiber, however they have certain disadvantages. These methods are capable of estimation of 

certain thermal properties, either axial thermal conductivity or heat capacity. These approaches 

are widely focused on the estimation of diffusivity and heat capacity in order to get the thermal 

conductivity. Most importantly rather less focus was given to the measurement of radial thermal 

conductivity. Apart from this, it uses either thermocouple or IR sensor for the temperature 

measurement. With small diameter of the fiber typically less than 10µm, it’s a big challenge to 

get good accuracy and stability in the result. Therefore, in the upcoming section a brief 

introduction about a more diverse technique, 3𝜔 method, is presented that has the capability of 

overcoming these drawbacks. Its widespread applications in characterization of thermal 

properties in multiple scales of materials makes it an intriguing choice of experiments. 

2.2 3ω method 

In 1912, O.M. Corbino[24] was the first one to observe a 3𝜔 voltage signal while testing 

the metal filaments of an incandescent light bulbs by passing an alternating current for measuring 

thermal diffusivity. Later this theory was used for measurement of thermal diffusivity of various 

types of material by heating the specimen using a metal filament which is in contact with the 

specimen under test. In the year 1987, Cahill and Pohl used this concept for the measurement of 

thermal conductivity of multiple amorphous solids using thin film metal acting as heater and 
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thermometer[25][26]. Successively the applicability of 3𝜔 method has been becoming large 

starting from macro scale carbon-fiber/epoxy composite[27], textiles[5] or flexible bio sourced 

polymers[28] to thin films ranging from nanometers to micrometers in thickness[19][29][30]. 

Even the thermal conductivities of liquids and gases [31][32][33] are also correctly estimated 

using this technic. In the recent times, apart from heater on the substrate configuration, many 

researches are also focusing on direct implementation of 3𝜔 signal with the specimen such as a 

wire or fiber. This was made possible with the development of fine electronic instrument such as 

lock-in Amplifier as it removes the necessity of frequency tripling circuit, making the electrical 

circuit simpler [27].  

In the article of Lu et al [10], they developed simplified experimental setup with a four-

probe resistance for simultaneously measurement of the specific heat and the axial thermal 

conductivity of a rod or filament-like specimen such as single platinum wire and carbon nanotube 

bundles. In this article, a 1D heat transfer equation was solved and then a solution for three omega 

voltage was presented in the form of an analytical model. But later simplified equations provided 

two separate models depending on high or low frequency working range. Lu et al [10] have also 

mentioned many detailed experimental tips while performing the 3𝜔 method experiments under 

vacuum. They also chose proper approximation to minimize the effect of convective and radiative 

heat losses by performing the experiment in vacuum.  

Later in 2005 [34], Dames and Chen have measured the thermal conductivity and specific 

heat of a suspended wire. They discussed two types of setup with current source and voltage 

source. It showed that the conversion of voltage source to approximate its action as current source 

is only valid when the sample resistance is small. They put emphasis on the information about the 

thermal conductivity in not only 3𝜔, but also 1𝜔 and 2𝜔 mode. Then in 2007 [35], Wang et al. 

published a research with four-pads 3𝜔 method which has the capability to cancel the noise in the 

signal due to 1𝜔 and measure the thermal conductivity, thermal diffusivity and heat capacity of 

an individual wire such as Platinum wire or polyacrylonitrile (PAN) based fiber. Later, in 2014 

[36][37], Xing et al. presented an article on accurate thermal property measurement of fine fibers 

by the 3-omega technique. Along with presenting the effect of two sources types namely current 

and voltage, it also showed the effect of 1𝜔 cancellation in the measurement of thermal properties. 

In this paper, the thermal properties such as heat capacity, thermal conductivity and diffusivity 

can be estimated independently using an appropriate excitation frequency range by the application 

of separate analytical models for each parameter.  

In the same year, a Ph.D. thesis by was presented by Junfeng Liang where he successfully 

retrieved the value of the thermal conductivity, both axial and transversal, for carbon fiber 

reinforced composite and also for a single fiber[38]. In case of single carbon fiber, type AS4 and 

IM10, the axial thermal conductivity (Table 2) and heat capacity are estimated by fitting the 

experimental data with the complete analytical model developed by Lu et al[10]. But the use of 

complete analytical model was not properly justified as all the previous research was focused on 

simplified analytical model depending on the low frequency and high frequency. For radial 

thermal conductivity, a novel 1D analytical model was developed by the assumption of the fiber 

type T650 placing in a semi-infinite medium such as de-ionized water. The estimated radial 
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thermal conductivity was approximately 1.5 W m-1 K-1.  In this case, also no clear justification of 

the choice of working frequency range is provided.  

The 3𝜔 method consists of heating the sample with an alternating current at a frequency 𝜔. 

The current leads to temperature fluctuations at 2𝜔, ultimately resulting in fluctuations of the 

voltage at both 𝜔 and 3𝜔. The variation of the 3𝜔 voltage with the frequency contains the 

information about the thermal properties such as axial thermal conductivity and volumetric heat 

capacity of the sample. It is therefore important to eliminate the 1𝜔 voltage by certain 

improvement in the setup such as a Wheatstone bridge [11] or an analog balance bridge 

circuit[35].  Fitting the 3𝜔 voltage with the developed analytical model (section 3.1) can estimate 

simultaneously the unknown thermal properties such as axial thermal conductivity and volumetric 

heat capacity.  Additionally, the specimen is itself acting as a heater making the accuracy in the 

measurements improved.  

3. Models for determining fiber thermal conductivity from 3ω 

response  

In this thesis, the 3𝜔 method is applied on the sample as a wire or fiber like filament.  It is 

required that the sample must be either electrical conductive or semi- conductive. The fiber is 

usually suspended between two copper strips serving as both electrodes and heat sinks. The AC 

driven voltage or current is directly fed onto the specimen and the specimen itself will response 

as both heater and sensor. The heat generation due to this voltage or current fluctuation in the 

sample can be predicted by solving 1D heat transfer equation. In the literature there are various 

approaches towards the development of the analytical model for voltage fluctuations, these are 

later being fitted with the experimental results to retrieve the thermal properties. The choice of a 

high frequency model for the estimation of heat capacity and low frequency for the thermal 

conductivity[10][20].  

Although in the thesis of Liang[38] the global analytical model by Lu et al[10]  is used for 

estimation of axial thermal conductivity and heat capacity simultaneously, however, it’s rather 

questionable to see no discussion on the choice of working frequency range. In my thesis, the 

objective is to use the full frequency dependent analytical model developed in the paper of Lu et 

al. This was made possible by the sensitivity analysis to determining a working frequency range 

where the sensitivity of 3w voltage is high for both thermal conductivity and heat capacity.  

3.1 Analytical Model 

The schematic diagram of the sample over the copper electrodes is depicted in Fig. 7. The 

fiber, assumed straight and of length L, is connected to two electrodes with constant temperature. 

The measurement of the voltage between the two electrodes over a given range of frequencies is 

then used to identify the thermal properties, by using a thermal model, which can be either 

analytical or numerical. This section provides a brief introduction of the analytical model for the 

3ω voltage response of a self-heating fiber depending on the imposed frequency (ω). The model 

assumes that the specimen is a uniform cylinder placed between two heat sinks (copper electrode) 
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with perfect contact at the joints (Fig. 7). An alternating electrical current (𝐼0sin (𝜔𝑡)) with a 

frequency ω passed through the sample that has an electrical resistance R and length L. 

   

 

 

Figure 1.9: Schematic diagram of the fiber sample with copper holders 

Lu et al. [11] has developed an analytical model for 1D heat conduction along the fiber 

with a source term that can predict the 3ω voltage through the sample. The partial differential 

equation associated to the heat conduction problem is as follows: 

𝜌𝐶𝑝
𝜕

𝜕𝑡
𝑇(𝑥, 𝑡) − 𝑘

𝜕2

𝜕𝑥2
𝑇(𝑥, 𝑡) =

𝐼𝑜
2 sin2𝜔𝑡 [𝑅0(1 + 𝛼𝑒(𝑇(𝑥, 𝑡) − 𝑇𝑜)]

𝑆𝐿
 (1.8) 

And boundary and initial conditions as  

{

𝑇(0, 𝑡) = 𝑇𝑜
𝑇(𝐿, 𝑡) = 𝑇𝑜
𝑇(𝑥, 0) = 𝑇𝑜

 (1.9) 

where 𝜌 is the density, 𝐶𝑝 is the heat capacity, 𝑘 is the thermal conductivity, 𝜔 = 2𝜋𝑓 is 

the angular frequency, 𝑓 is the frequency,  𝑇(𝑥, 𝑡) is the temperature of the sample at position x 

and time t, 𝑇0 is the ambient temperature, 𝐼0is the amplitude of the current, 𝑅0 is the electrical 

resistance of the fiber at 𝑇0, 𝛼𝑒 is the temperature coefficient of this electrical resistance, S is the 

cross sectional area and L is the length of the sample. Let Δ(𝑥, 𝑡) denotes the temperature variation 

from 𝑇𝑜 , i.e. Δ(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) − 𝑇𝑜, then Eq. (1.8) and (1.9) become: 

𝜕

𝜕𝑡
Δ(𝑥, 𝑡) − 𝛼𝑡

𝜕2

𝜕𝑥2
Δ(𝑥, 𝑡) − 𝑐𝑠𝑖𝑛2𝜔𝑡Δ(𝑥, 𝑡) = 𝑏𝑠𝑖𝑛2𝜔𝑡 (1.10) 

With initial and boundary conditions changed to  

{

Δ(0, 𝑡) = 0
Δ(𝐿, 𝑡) = 0
Δ(𝑥, 0) = 0

 (1.11) 

Where 𝛼𝑡 = (
𝑘

𝜌𝐶𝑝
) is the thermal diffusivity,  𝑏 =

𝐼𝑜
2𝑅

𝜌𝐶𝑝𝐿𝑆
 , =

𝐼𝑜
2𝑅′

𝜌𝐶𝑝𝐿𝑆
, 𝑅′ = 𝑅0𝛼𝑒 . Using the 

theory of momentum impulse as taking 𝑏𝑠𝑖𝑛2𝜔𝑡 as the instantaneous force at each time interval, 

we can obtain Δ(𝑥, 𝑡) as an integral of the samples responses to that force. Thus we obtain 

0 L 

x 
Copper electrode 

Fiber 
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Δ(𝑥, 𝑡) = ∫ 𝑧(𝑥, 𝑡; 𝜏)𝑑𝜏
𝑡

−∞

 (1.12) 

Where 𝑧(𝑥, 𝑡; 𝜏) satisfies  

𝜕𝑧

𝜕𝑡
− 𝛼

𝜕2𝑧

𝜕𝑥2
− 𝑐𝑠𝑖𝑛2𝜔𝑡 z = 0 (1.13) 

While satisfying 

{

z(0, 𝑡) = 0
z(𝐿, 𝑡) = 0

z(𝑥, 𝜏 + 0) = 𝑏𝑠𝑖𝑛2𝜔𝜏

 (1.14) 

Using the expansion of Fourier series we can expand 𝑧(𝑥, 𝑡; 𝜏) as 

z(𝑥, 𝑡; 𝜏) = ∑𝑈𝑛(𝑡; 𝜏) sin (
𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

 (1.15) 

This gives 

∑[ 
𝑑𝑈𝑛
𝑑𝑡

∞

𝑛=1

+ (
𝑛2

𝛾
− 𝑐𝑠𝑖𝑛2𝜔𝑡)𝑈𝑛 ] sin (

𝑛𝜋𝑥

𝐿
) = 0 (1.16) 

where 𝛾 ≡ 𝐿2/𝜋2𝛼𝑡 is the thermal time constant for axial heat transfer. The term 

𝑐𝑠𝑖𝑛2𝜔𝑡 can be neglected if 
𝑛2

𝛾
≫ 𝑐 or equivalently  

𝐼𝑜
2𝑅′𝐿

𝑛2𝜋2𝑘𝑆
≪ 1 (1.17) 

The above condition indicates that the heating power inhomogeneity caused by the 

resistance fluctuation along the specimen should be much less than the total heating power. It is 

recommended that Eq. 1.17 must be satisfied for obtaining accurate results. After dropping the 

𝑐𝑠𝑖𝑛2𝜔𝑡 term the solution to the ordinary differential equation can be written as  

𝑈𝑛(𝑡; 𝜏) = 𝐶𝑛(𝜏)𝑒
−(
𝑛2

𝛾
)(𝑡−𝜏)

 
(1.18) 

We can obtain the value of 𝐶𝑛 by implement the above equation in the initial condition 𝑡 =

𝜏 stated in Eq. 1.14 from the expression ∑ (
2[1−(−1)𝑛]

𝑛𝜋
) sin (

𝑛𝜋𝑥

𝐿
)∞

𝑛=1 = 1 for 0<x<L: 

𝐶𝑛(𝜏) =
2𝑏[1 − (−1)𝑛]

𝑛𝜋
sin2𝜔𝜏 (1.19) 

Using (13) and (14) in (9) we obtain 
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𝑧(𝑥, 𝑡; 𝜏) = ∑ sin(
𝑛𝜋𝑥

𝐿
)
2𝑏[1 − (−1)𝑛]

𝑛𝜋
sin2(𝜔𝜏)𝑒

−(
𝑛2

𝛾
)(𝑡−𝜏)

 

∞

𝑛=1

 (1.20) 

The term in Eq. 1.20 can be implemented in Eq. 1.12 to obtain the expression for 

temperature by using integration by parts.  

𝑇(𝑥, 𝑡) − 𝑇𝑜 = ∆𝑜∑
[1 − (−1)𝑛]

2𝑛3
∗ sin (

𝑛𝜋𝑥

𝐿
) [1 − (

sin(2𝜔𝑡 + 𝜙𝑛)

√(1 + cot2𝜙𝑛) 
)]

∞

𝑛=1

 (1.21) 

Where 𝑐𝑜𝑡𝜙𝑛 =
2𝜔𝛾

𝑛2
, and Δ𝑜 =

2𝛾𝑏

𝜋
=

2𝐼𝑜
2𝑅𝐿

𝜋𝑘𝑆
  is the maximum DC temperature 

accumulation at the center of the specimen. The electrical resistance fluctuation can be obtained 

by integrating temperature fluctuation over the length.  

𝛿𝑅 =
𝑅′

𝐿
∫ [𝑇(𝑥, 𝑡) − 𝑇0]𝑑𝑥
𝐿

0

 (1.22) 

This gives us an expression for resistance fluctuation that is expressed as shown below. 

𝛿𝑅 = 𝑅′∆𝑜∑
[1 − (−1)𝑛]2

2𝜋𝑛4
[1 − (

sin(2𝜔𝑡 + 𝜙𝑛)

√(1 + cot2𝜙𝑛) 
)]

∞

𝑛=1

 (1.23) 

𝜙𝑛 is the value of the phase constant. This expression of electrical resistance fluctuation 

(function of 2𝜔) is due to the temperature fluctuation which can then be added to the sample 

initial electrical resistance 𝑅0 to obtain the total resistance(𝑅0 + 𝛿𝑅). This value of total 

resistance is then multiplied with the applied AC current (𝐼 = 𝐼𝑜𝑠𝑖𝑛(𝜔𝑡)) to obtain a value of 

voltage (V=IR) drop across the sample,  

𝑉 =  𝐼𝑅 = 𝐼(𝜔)(𝑅0 + 𝛿𝑅(2𝜔)) = 𝑓(𝜔) + 𝑔(3𝜔) (1.24) 

The voltage has two components, one depending on 𝜔 and another on  3𝜔 . The 3𝜔 part 

contains the information about the thermal properties as it is derived from the temperature 

fluctuation part of resistance. So the third harmonic voltage can be derived as follows after doing 

some mathematical simplification[10].  

𝑉3𝜔(𝑡) ≈  −
2𝐼3𝑜𝑅0𝑅

′

𝜋4𝑘𝑆√1 + (2𝜔𝛾)2
sin(3𝜔𝑡 − 𝜙) (1.25) 

Here the phase constant has been redefined as 𝜙 =
𝜋

2
− 𝜙𝑛=1 with 𝑡𝑎𝑛𝜙 ≈ 2𝜔𝛾. 

Averaging (Root Mean Square) voltage over time at 3ω frequency can be written as follows: 

𝑉3𝜔 𝑟𝑚𝑠 ≈ −
4𝐼𝑟𝑚𝑠
3 𝐿𝑅𝑅′

𝜋4𝑘𝑆√1 + (2𝜔𝛾)2
 (1.26) 

This is the global frequency dependent analytical model for 3𝜔 fluctuations of voltage. 

Fitting the experimental data of 𝑉3𝜔 𝑟𝑚𝑠 vs proper frequency with this analytical Eq. 1.21 can 

estimate the value for axial thermal conductivity and volumetric heat capacity (𝛾 ≡ 𝐿2𝜌𝐶𝑝/𝜋
2𝑘) 

for the sample under test.  
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3.2 Pre-requisites for the validity of analytical model 

As discussed previously, applicability of the analytical model for a successful 

implementation of the 3𝜔 method requires few preconditions to be fulfilled first. These factors 

came into play either during the derivation of the analytical model or for neglecting 

convective/radiative losses during experiment. In the following, these are explained in brief: 

 From the Eq. 1.26, we can observe that 𝑉3𝜔_𝑟𝑚𝑠  ∝  𝐼
3. To validate the 

3𝜔 method it is essential first to fulfill this condition.  

 The choice of correct current value is necessary in order to follow the 

condition which comes across the derivation of the analytical Eq. 1.17: 

𝛿0 =
𝐼0
2𝐿𝑅′

𝜋2𝑘𝑆
≪ 1 

(1.27) 

The current implemented should not be even very small as a small current will tend 

to have a small 𝑉3𝜔_𝑟𝑚𝑠 and thus include the noise coming from other electronic 

apparatus.  

 It is also important to take care of the length of the sample that is being 

chosen for the preparation of the sample. A larger length will result in larger thermal time 

constant (𝛾 ∝   𝐿2) which will result in a lower frequency window. This will make the 

analytical equation independent of thermal conductivity as the denominator is primarily 

dominated by the high value of the thermal time constant. A detailed sensitivity analysis 

is shown in section 4. 

 To encounter for the radiative heat loss through the fiber surface, one 

should take care that radiative power due to the fluctuations in temperature along the 

specimen should be much less than the axial heat current[10]. In this paper, it is well 

explained by solving the partial differential equation of heat transfer with radiative heat 

loss term (Eq. 1.29). 

𝑊(𝑥, 𝑡) = 𝜋𝜀𝜎𝐷(𝑇(𝑥, 𝑡)4 − 𝑇𝑜
4) ≈ 4𝜋𝜀𝜎𝐷𝑇𝑜

3Δ(𝑥, 𝑡) (1.28) 

𝜌𝐶𝑝
𝜕

𝜕𝑡
𝑇(𝑥, 𝑡) − 𝑘

𝜕2

𝜕𝑥2
𝑇(𝑥, 𝑡) +

16𝜀𝜎𝑇0
3

𝐷
(𝑇(𝑥, 𝑡) − 𝑇𝑜)

= 𝐼𝑜
2 sin2𝜔𝑡 [𝑅0(1 + 𝛼𝑒(𝑇(𝑥, 𝑡) − 𝑇𝑜)] 

(1.29) 

Where 𝜀 is the emissivity, 𝜎 is the Stefan Boltzmann constant, 𝐷 is the diameter of 

the sample. While deriving the solution for heat transfer equation for the above equation, 

it was indicated that the radiation heat loss can be neglected [10] if   

16𝜀𝜎𝑇0
3𝐿2

𝜋2𝑘𝐷
≪ 1 

(1.30) 

 As the copper slab is chosen as the heat sink for the fiber thus it is very 

important that the state of the copper slab should be good. As the copper suffers from 

oxidation thus it will lead to spurious signal and results in unstable 𝑉3𝜔_𝑟𝑚𝑠. Thus it’s 
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necessary to remove the oxidation from the copper plate either by scrubbing with sand 

paper.  

 In addition, it is crucial to analyze the effect of the contact between the 

sample and copper blocks. This would add to the overall uncertainty in the parameter 

estimation. 

 

These guidelines can help in achieving a better accuracy in the results and fulfilling the 

objective faster. But with these pre-requisites, it is crucial to verify the appropriateness of 

analytical model to our experimental setup. Furthermore previous researches on 3ω method were 

restrictive to experiments in a vacuum chamber [11][19] rather the question of the effect of 

convective heat losses when working at atmospheric pressure is not addressed. This led to the 

objective of development of a numerical model without any prior presumptions and to compare 

the results with the analytical model. It can strongly justify the further utility of this analytical 

model for extracting the unknowns from experiments. 

3.3 Numerical Finite Difference Model 

This section shows a brief description of the numerical model for estimating the 3ω 

response of one fiber in the configuration depicted in Figure 1.10 after passing an alternating 

current. Compared to the previous analytical model, the numerical one takes into account the 

lateral heat losses through the heat transfer coefficient (h). In the case of constant thermophysical 

parameters, the heat transfer phenomena along with convective heat loss term can be described 

by the following 1D partial differential equation with the spatial boundary condition same as Eq. 

1.9:  

 

 

 

 

 

𝜌𝐶𝑝
𝑘

𝜕

𝜕𝑡
𝑇(𝑥, 𝑡) −

𝜕2

𝜕𝑥2
𝑇(𝑥, 𝑡) + 𝑚2(𝑇(𝑥, 𝑡) − 𝑇𝑜) =

𝑄

𝑘
 

(1.31) 

where 𝑚2 = 4ℎ 𝑘𝐷⁄   with h the heat transfer coefficient of air that surrounds the sample. 

Q is the average volumetric heat source due to the alternating current. By choosing ∆𝑇(𝑥, 𝑡) =

𝑇(𝑥, 𝑡) − 𝑇𝑜 , the above equation can be transformed to 

∑𝑐

∞

𝑛=1

𝜌𝐶𝑝

𝑘

𝜕

𝜕𝑡
∆𝑇(𝑥, 𝑡) −

𝜕2

𝜕𝑥2
∆𝑇(𝑥, 𝑡) + 𝑚2(∆𝑇(𝑥, 𝑡)) =

𝑄

𝑘
 

(1.32) 

 
Figure 1.10: Schematic diagram for the sample to solve numerical model 
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Convection 
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One of the outcomes from the analytical model is ∆𝑇(𝑥, 𝑡)~𝑅 = 𝑓(2𝜔). The volumetric 

heat source fluctuates at 2𝜔 (
2𝑅𝐼𝑟𝑚𝑠

2

𝑆𝐿
⁄ ~𝑓(2𝜔)), the terms ∆𝑇 and 𝑄 can be sought in the 

following periodic form:   

∆𝑇 = 𝑇̃𝑒𝑗2𝜔𝑡, 𝑄 = 𝑄̃𝑒𝑗2𝜔𝑡 (1.33) 

where 𝑇̃ and 𝑄̃ are the complex expressions of the temperature drop and volumetric power 

respectively. Eq. 1.32 can be transformed by implementation of Eq. 1.33 to:  

𝜕2𝑇̃

𝜕𝑥2
= −

𝑄̃

𝑘
+ (

𝑗2𝜔ρC𝑝
𝑘

+𝑚2) 𝑇̃ 
(1.34) 

The spatial boundary conditions present in Eq. 1.9 can be transformed to Eq. 1.35 

{
𝑇̃ = 0,   𝑥 = 0

𝑇̃ = 0,    𝑥 = 𝐿
 

 (1.35) 

A 1D mesh representative of the sample was generated and a central finite difference 

approach was used to solve the Eq. 1.34.  

𝜕2𝑇̃

𝜕𝑥2
=
𝑇̃𝑖+1 − 2𝑇̃𝑖 + 𝑇̃𝑖−1

Δ𝑥2
 

 (1.36) 

The source term is independent of spatial discretization, thus the Eq. 1.34 is transformed to  

1

Δ𝑥2
 𝑇̃𝑖+1 − [

2

Δ𝑥2
+
𝑗2𝜔

𝛼
+𝑚2] 𝑇̃𝑖 +

1

Δ𝑥2
𝑇̃𝑖−1 = −

𝑄̃

𝑘
 

 (1.37) 

For simplification, few variable assumptions are taken such as  

1

Δx2
 as Ω, −[

2

Δ𝑥2
+
𝑗2𝜔

𝛼
+𝑚2] as 𝛽, −

𝑄̃

𝑘
 as 𝛾 

(1.38) 

The equation transformed to visually more compact form to  

Ω 𝑇̃𝑖+1 + 𝛽 𝑇̃𝑖 + Ω 𝑇̃𝑖−1 = 𝛾  (1.39) 

The solution of temperature can be achieved by a simple matrix conversion which will 

change the equation to multiple equations at each nodes. The number of equations formed is equal 

to the number of nodes and thus the matrix form of the equation is shown as   

[
 
 
 
 
 
 𝑇̃2
 𝑇̃3
⋮
⋮
⋮

 𝑇̃𝑁−1]
 
 
 
 
 

=  

[
 
 
 
 
 
𝛽  0 … … 0
 𝛽  0 … 0
0  𝛽  … 0
⋮ ⋮ ⋱ ⋱ ⋱ 0
⋮ ⋮ 0 ⋱ ⋱ ⋱
0 0 0 0  𝛽]

 
 
 
 
 
−1

[
 
 
 
 
 
 
 
⋮
⋮
⋮
⋮
⋮
 ]
 
 
 
 
 
 

 with 

{
 
 

 
 𝛾 =

1

𝛥𝑥2

 = −[
2

𝛥𝑥2
+
𝑗2𝜔𝜌𝐶𝑝

𝑘
+𝑚2]

𝛿 = −
𝑄̃

𝑘

 

(1.40) 

The complex form of the temperature rises at all nodes (𝑇̃2, 𝑇̃3… 𝑇̃𝑁−1) can be estimated by 

solving this linear system. The modulus of the average of this temperature rises over all nodes (N) 

gives the average axial temperature rise 𝑇𝑎𝑣 of the sample for certain frequency:  
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𝑇𝑎𝑣 = ‖∑𝑇̃𝑖

𝑁

1

‖ /𝑁 

(1.41) 

The overall voltage response at each frequency measured in 3𝜔 method is dependent on 

𝑇𝑎𝑣 of the sample and thus the numerical 𝑉3𝜔 𝑟𝑚𝑠 can be expressed as follows:  

𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠(𝑅0 + 𝑅0𝛼𝑒𝑇𝑎𝑣) = 𝑓(𝜔) + 𝑔(3𝜔) (1.42) 

𝑉3𝜔 𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅0𝛼𝑒𝑇𝑎𝑣 (1.43) 

This step is repeated for estimating 𝑉3𝜔 𝑟𝑚𝑠 for the desired frequencies. It is interesting to 

observe that the effect of convective loss during the measurements under atmospheric condition 

can be approximated by implementation of heat transfer coefficient in the term ‘m’ present in Eq. 

1.40. This is determined by the correlations given in the literature. For the experimental conditions 

of 3𝜔 method, the correlations by Morgan[39] or Churcill and Chu[40] are suitable to implement 

according to the Rayleigh Number (Ra).  

𝑅𝑎 =
𝑔𝛽∆𝑇𝐷3

𝜗𝛼𝑡
 (1.44) 

Where 𝑔 is acceleration due to gravity, 𝛽 is the thermal expansion coefficient, 𝜗 is the 

kinematic viscosity.  

3.4 Comparison of Analytical and Numerical model 

In this section, a comparison between the 𝑉3𝜔 𝑟𝑚𝑠 calculated with the analytical model and 

numerical model is shown. This could ultimately help in understanding the effect of various 

assumptions (section 4.2) on the validity of the analytical model. The comparison between these 

two models was proceeded by testing the 3𝜔 voltage fluctuations (𝑉3𝜔 𝑟𝑚𝑠) over a test case for 

chromel wire (assuming a diameter of 13 µm) and carbon fiber (assuming a diameter of 7 µm) 

with a length of 1.5mm. An alternating current of 6mA and 1mA was assumed to pass through 

the chromel wire and carbon fiber respectively. The difference in the choice of the current input 

is due to the fact that carbon fiber are electrically more resistive as compared to chromel wire. 

The values of thermal properties were imposed from the literature or from the supplier [41–43]. 

A comparison of the estimated value of 𝑉3𝜔 𝑟𝑚𝑠 under vacuum, by using numerical and analytical 

models is shown in Figure 1.11. It showed a good agreement between the 𝑉3𝜔 𝑟𝑚𝑠 values obtained 

with the two models. The difference lies mostly at lower frequencies with a value less than 1.6% 

of maximum 𝑉3𝜔 𝑟𝑚𝑠(𝑓 < 0.1𝐻𝑧). A similar result was found for comparison of analytical and 

numerical model in case of carbon fiber. Additionally, for each test, the validity condition of Eq. 

1.17 for the analytical model is well checked with an approximate value of 0 = 4×10-4 for chromel 

and 0 = 4×10-2 for carbon fiber.  
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Figure 1.11: Numerical and analytical models comparison and effect of convective losses 

(13.6m diameter and 1.5mm length of chromel wire) 

In addition to the comparison of both models under vacuum, a test was also done to quantify 

the effect of convective heat transfer. Since the numerical model has a term ‘m’ to handle the 

convective heat losses, thus the  𝑉3𝜔 𝑟𝑚𝑠 is predicted from a periodic heating of the sample in an 

atmospheric condition. This is possible by imposing an approximate value of heat transfer 

coefficient with a correlation for natural air convection around a horizontal cylinder[39][40] with 

an assumption of max 1K[10] increase in temperature. The radiation losses can be neglected as 

the criterion of Eq. 1.8 is always respected for the chromel wire (1~0.025) and also carbon fibers 

(1~0.079). It can be observed from Figure 1.11 that the convective heat transfer leads to a huge 

drop of the 𝑉3𝜔 𝑟𝑚𝑠value. To quantify the effect of convective heat loss on the estimation of 

thermal conductivity and heat capacity, this data is then fitted with analytical model. Table 3 

shows that the thermal conductivity value is increased by ~390% and the heat capacity value is 

decreased by ~8% for chromel wire.  

These biases become more prominent in case of carbon fiber as its thermal conductivity is 

smaller and also as the approximated heat transfer coefficient almost doubled due to its smaller 

diameter. Thus it is highly important to use vacuum while performing measurements in 3𝜔 

method especially for thermal conductivity. Thus, all the experiments of 3𝜔 method in this thesis 

are performed under vacuum.   

Sample 
Heat transfer 

coefficients 
Thermal Properties estimated 

 h(Wm-2K-1) k(Wm-1K-1) ρCP(MJ m-3K-1) 

Chromel wire 
0 17 3.8 

700* 66 3.48 

Carbon fiber 
0 10 1.3 

1300* 133 1.14 

*: computed using correlation for natural air convection around a horizontal cylinder [40] 

Table 3: Thermal conductivity and heat capacity estimated with and without convective 

losses 

<1.6% 
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4. Sensitivity Analysis 

One of the important objective is to find the frequency range where it is possible to use the 

frequency dependent analytical model for estimation of both axial thermal conductivity and heat 

capacity. A sensitivity analysis was performed over the voltage fluctuations at 3𝜔 with the 

unknown thermophysical parameters (𝑢𝑃), ultimately helping in choosing a frequency window 

that can give a better accuracy in the results. This is defined by the reduced sensitivity coefficients 

(𝑋∗𝑢𝑃) and is computed by [44]:  

∑𝑐𝑋∗𝑢𝑃 = 𝑢𝑃
𝜕𝑉3𝜔 𝑟𝑚𝑠

𝑚𝑎𝑥 (𝑉3𝜔 𝑟𝑚𝑠)𝜕𝑢𝑃
, 𝑤𝑖𝑡ℎ 𝑢𝑃 = 𝑘, 𝜌𝐶𝑝

∞

𝑛=1

 
(1.45) 

From the analysis on various parameters impacting the calculation of 𝑋∗𝑢𝑃, it was found 

that the length of the sample can hugely influence the working frequency range. Thus various 

lengths ranging from 0.5 to 3.5 mm were chosen in order to see how this can affect the reduced 

sensitivity coefficient of multiple samples. The sensitivity analysis of the testing sample of 

chromel wire or PAN fibers type FT300B and FT800H (explained in section 5.2). The thermal 

conductivity and heat capacity were imposed from the literature or from the supplier (Table 5 and 

6). Figure 1.12 and 1.13 show that the sensitivities of thermal conductivity and heat capacity are 

high in a particular frequency range depending on the sample length. A better accuracy can be 

recovered if the sensitivity coefficients are higher in the working frequency range. Working on a 

frequency lower than 1Hz would lead to higher time constant and ultimately longer time for 

stabilization. On the other hand working on a higher frequency would lead to a choice of smaller 

length for having higher sensitivity of the unknown parameters. It will create practical problems 

for the sample such as placing it on the holder or putting silver paste. Thus a frequency window 

of 1-100Hz is chosen in order to avoid these problems.  For example, 0.8-1.6mm range of length 

for carbon fiber sample FT300B will give higher 𝑋∗𝑢𝑃  values, thus a better estimation of the 

thermal properties.  
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Figure 1.12: Sensitivity analysis of the V3 rms to the volumetric heat capacity with varied 

sample lengths (a) chromel wire (b) FT300B (c) FT800H 
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Figure 1.13: Sensitivity analysis of the V3 rms to the axial thermal conductivity with varied 

sample lengths (a) chromel wire (b) FT300B (c) FT800H 

 

 

(c) 

(a) 
(b) 

(c) 



Chapter 1: Measurement of axial thermal conductivity for single carbon fibers 

26 

 

5. Experimental Setup and Materials 

The previous section showed the importance of choosing proper frequency window which 

is one of the most important aspect in 3𝜔 method experiments. In this section the experimental 

setup along with the description of each component used are discussed.  

5.1 Experimental Setup 

The experimental setup for 3𝜔 method can have multiple configurations for fulfilling the 

objective of extraction of 3𝜔 voltage from the sample. Depending on the type of source, it can be 

either with a voltage or current source[36][34]. The advantage of current source over the voltage 

source is the direct application of the 3𝜔 theory where we assume the periodic heating by 

imposing an alternating current[36].  

As mentioned in the section 2.2, it is necessary to extract just the 3𝜔 signal by cancelling 

the 1𝜔 signal. This can be achieved again by two types of setup, i.e., either with a Wheatstone 

bridge or with a differential amplifier (Figure 1.14). In order to measure the 3𝜔 voltage in the 

sample, it is positioned in one of the branches of Wheatstone bridge circuit. On the other hand in 

differential amplifier circuit, it is placed in series with a potentiometer. Although both 

configurations can assist in getting just the 3𝜔 voltage but differential amplifier has the capacity 

to work on a sample with high electrical resistance. On the contrary, in case of Wheatstone bridge, 

the stability of signal reduces as the resistance of the sample is more than 500 Ohms. This is due 

to the discrepancy with the 50 Ohms input impedance of the lock-in-amplifier. Moreover the error 

in the measurement of thermal conductivity with Wheatstone bridge is higher than using 

differential amplifier along with more repetitive results[30]. This was observed in few of the 

initial test in the thesis performed for 3𝜔 voltage with Wheatstone bridge with a fiber of 

approximately 1 kOhms. Therefore two differential amplifiers (AD624) with a constant current 

source (Keithley 6221) were used for the detection of the voltage signal in the sample. 

  

Figure 1.14: (a) Wheatstone bridge circuit (b) Differential amplifier 

(a) 

(b) 
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Figure 1.15 shows the circuit diagram for the detection of 3𝜔 voltage while using a 

configuration of constant current source and differential amplifier. A detailed description about 

each apparatus along with the application in 3𝜔 measurement is given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: Electrical setup for 3𝝎 measurement (a) Schematic (b) Electronic Instruments 

AC current source: The current is supplied by a KEITHLEY 6221 current source. This 

model works on a wider current sourcing range from 4pA to 210mA peak to peak. It has the 

advantage of being cost effective, high consistency and robustness. It has a built in current source 

waveform generator that works in the frequency range of 1mHz to 100kHz. It can also produce 

huge variety of signals such as sinusoidal, square etc.  

Variable resistance: As in differential amplifier the objective is to produce 1𝜔 signal in 

two almost equal resistances and making a differentiation between them and finally get the 

information regarding the 3𝜔 signal in the sample. In order to do so, a variable resistance (RV) is 

used which can be manually tuned to get the same resistance as the sample (RX). The variable 

resistance is built with three tunable resistances ranging from 2.5 to 5000 Ohms (Figure 1.16). 

This would generate the same 1𝜔 voltage in the two resistances and with the help of differential 

amplifier AD624 it can extract any voltage fluctuations occurring in the two resistances. The 

amplifier AD624 with high precision and low noise is used at gain 1. 

(a) 

(b) 

Current Source 

LIA 

Variable 

Resistance 

Multmeter 

Power Source 



Chapter 1: Measurement of axial thermal conductivity for single carbon fibers 

28 

 

 

Figure 1.16: Variable resistance 

Lock in amplifier: A lock-in-amplifier (LIA) has the capacity to either recover signal even 

in the presence of high noise or working at different frequency levels to provide signal of large 

order of magnitude with high resolution. For the experimental setup, SIGNAL RECOVERY 7265 

LIA from AMETEK is used. It is being popularly used because of its multipurpose functioning 

range in many fields of scientific research such as material science, electrochemistry, optics, etc. 

[45]. It is a more versatile form of lock-in-amplifier (LIA) which uses digital signal processing 

that is suitable for experimental control and measurements. Thus it increases the working 

competences of LIA in favor of researcher.  It has a wider frequency operating range from 1 mHz 

to 100 kHz. The major advantage for this model lies in the capability of detection of sensitivity 

to voltage up to 2 nV and current 2 fA, recovery of AC signal, recording transient data with high 

precision etc.[46]  

Briefly, the block diagram for a LIA is as shown in Figure 1.17. This can help in detecting 

the real and imaginary part of a voltage signal with a low order magnitude despite of the noise in 

the signal. In this a phase sensitivity detector (PSD) multiplies the amplified input signal with 

noise to the reference input signal at a base frequency. Thus the LIA detects the signal at that 

particular base frequency. In the 3𝜔 method, two input signals, i.e. A and B are differentiated 

among which one is from the sample and the other one from the variable resistance. In the LIA, 

A-B mode is switched on in order to detect the 3𝜔 signal only in the sample. Initially in the LIA, 

1𝜔 signal is detected as in order to have the variable resistance equal to that of the sample and 

thus giving 1𝜔 signal of voltage to the LIA as close as possible to 0V. Then the signal recovery 

is shifted to 3𝜔 thus detecting only the 3𝜔 voltage fluctuations in the sample as the variable 

resistance is a pure resistance with no 3𝜔 voltage.  
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Figure 1.17: Block diagram for a LIA 

5.2 Materials 

In the literature, the 3𝜔 method is used for metallic wire such as platinum[37] or tungsten 

[38][10], carbon nanotubes[10], or carbon fibers[35].  In this thesis, the objective is to measure 

the thermal properties of carbon fiber of types FT300B (high stiffness) and FT800H (high 

modulus) (Toray) provided by Chomarat company. Chromel wire (Omega Engg) is used for the 

validation of the experimental setup. The easy availability and similar thermal properties of 

chromel wire such as thermal conductivity or temperature coefficient of resistance makes it an 

ideal choice as a reference sample. Figure 1.18 shows the images retrieved from the scanning 

electron microscopy for the fiber FT300B and FT800H. The diameter of carbon fibers are ranging 

from 4-8µm making it a great difficulty for performing any direct measurements.  

    

 

Figure 1.18: Scanning electron microscopy images for carbon fiber (a) along the length (b) 

along the cross-section FT300B (c) FT800H 

(a) (b) 

(c) 
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5.3 Specimen Preparation 

The schematic diagram associated to the analytical model for measuring the axial thermal 

conductivity and volumetric heat capacity is previously shown in Figure 1.9. The sample is cut 

into small pieces depending on the desired length and then placed over two copper electrodes 

acting as a heat sink and electrical connector. Copper is chosen as the electrode due to its high 

thermal and electrical conductivity. The copper electrodes were cut in a way that the sample 

length can be chosen from 1mm to 10mm. These strips are then fixed over a glass slide by an 

adhesive to avoid movements during experiments. Due to the problem of oxidation of the copper, 

it is necessary to clean the strips with sand paper before use.  

The fiber is placed over the two electrodes and stretched in order to have a straight sample 

making an accurate measurement of the length (Figure 1.19). The sample is then carefully 

attached with the electrode by using silver paste. Sufficient time is given for pasting until the 

electrical resistance remains constant. The sample holder is then connected with the rest of the 

electrical setup with the help of copper attachments shown in Figure 1.19 (c).  

 

 

 

 

 

         (a)     (b) 

 

 

 

 

 

 

 

 

Figure 1.19: (a) Sample holder (b) zoomed image of fiber on the electrode (c) Sample with 

the electric connector (d) Vacuum chamber 

Glass substrate 

Copper Electrode 

(c) (d) 

Sample 
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5.4 Measurement Procedure 

In order to retrieve the unknown thermal properties, fitting the analytical model with 

experimental results of 𝑉3𝜔 𝑟𝑚𝑠 is only possible when each parameter involved in the analytical 

model (Eq. 1.26) is well measured. The values of 𝐼𝑟𝑚𝑠 and 𝜔 are noted from the current source 

KEITHLEY 6221 which is also acting as frequency generator. The resistance (RX) is measured 

from the multi-meter externally connected with circuit.  An accurate measurement of the 

parameters such as sample length (L) and diameter (D), is necessary. A Scanning Electron 

Microscope and a high-resolution optical camera were used to have an exact measurement of the 

sample diameter and length respectively. The length of the sample is also chosen in such a way 

that the frequency window of working is from 1 to 100 Hz. Table 4 shows the diameter and length 

of each sample that was be used in this thesis.  

Type of fiber Diameter/µm Length/mm 

FT300B 

Sample 1 6.95-7.23 1.24 

Sample 2 6.69-7.01 1.34 

Sample 3 7.32-7.61 1.53 

Sample 4 6.99-7.62 1.76 

FT800H Sample 1 5.45-5.79 1.57 

 Sample 2 5.34-5.89 1.28 

Chromel  13.62 1.64 

Table 4: Dimension of the samples used for 3𝝎 measurement 

After the successful measurement of each parameter, curve fitting tool of Matlab is used 

for fitting the 𝑉3𝜔 𝑟𝑚𝑠 with the analytical model. The objective is to find a solution for the 

unknown thermal properties that minimizes the difference between the analytical model and 

experimental results. A built in Matlab algorithm Levenberg-Marquardt that uses nonlinear least 

squares method is applied for estimation of the thermal conductivity and heat capacity of the 

sample.  

5.5 Temperature Coefficient of Resistance 

The temperature coefficient of resistance (𝛼𝑒) is still an unknown parameter for the 

implementation of the analytical model. It is the change in the resistance with 1-degree change in 

temperature of the sample.  

𝛼𝑒 =
1

𝑅0

(𝑅 − 𝑅0)

(𝑇 − 𝑇0)
 

(1.46) 

𝛼𝑒 is the temperature coefficient of resistance in 𝐾−1, 𝑅0 is the initial resistance of the 

sample at initial temperature (𝑇0) in ohms and R is the current resistance at current temperature 

T. It is very important to measure the temperature coefficient of resistance correctly for better 

accuracy of the results. It can be achieved by varying the sample temperature gradually and 

according the variation in the electrical resistance. The following setup can be used to fulfill this 

objective.  
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Figure 1.20: Schematic diagram for 𝜶𝒆measurements. 

A thermos-regulated bath (LAUDA) was used to supply the temperature controlled water 

through a parallel heat exchanger for heating the sample gradually with the elevation of 2K 

(Figure 1.20). A K-type thermocouple was welded at the electrode at closest vicinity to the sample 

to measure the exact temperature. Then a multi-meter was connected to measure the resistance 

through the sample with the change in temperature.  

For each sample, i.e., 2 types of PAN carbon fibers and chromel wire, the temperature 

coefficient of resistance was measured. The value of 𝛼𝑒 wass measured by changing the 

temperature of heat exchanger by varying the thermal baths between 12 and 32oC. Figure 1.21 

shows the variation of resistance with the temperature rise for chromel wire and by linear fitting 

the experimental data we got 𝛼𝑒 as 2.8 10-4 K-1. A similar test was performed for the carbon fiber 

FT300B and FT800H. Table 5 shows the experimentaly measured value of 𝛼𝑒 for the sample that 

were tested for 3 method. The low temperature coefficient of chromel wire as compared to other 

metallic wires such as tungsten or platinum (Table 5) shows the difficulty to perform 3 method 

as temperature measurement is an additional challenge.  
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Material 𝜶𝒆 (K
-1) 

Platinum 3.9 10-3  [38] 

Tungsten 4.3 10-3 [38] 

Chromel 2.8 10-4 (experimental) 

Carbon Fiber FT300B 2.3 10-4(experimental) 

Carbon Fiber FT800H 2.5 10-4(experimental) 

Table 5: 𝛂𝐞 for different materials 

6. Uncertainty Analysis 

Despite the use of instruments with high accuracy, there are few uncertainties on known 

parameters such as length, diameter, current and etc. The model for estimation of the overall 

uncertainty on the thermal conductivity and heat capacity measurement through 3𝜔 was presented 

by Milosevic[47].  

𝑆𝑓𝑖𝑛𝑎𝑙 = [𝑋
𝑇 𝑊 𝑋]−1 with 𝑊 = [𝜎𝑉3𝜔 𝑟𝑚𝑠

2 +∑ (𝜎 𝑢𝑃
𝜕𝑉3𝜔 𝑟𝑚𝑠

𝜕 𝑢𝑃
)2𝑝 ]

−1
 

 (1.47) 

where 𝑋 is the sensitivity coefficient matrix, 𝑊 is the variance covariance matrix, 𝜎𝑉3𝜔 𝑟𝑚𝑠is 

the variance of measured 𝑉3𝜔 𝑟𝑚𝑠, 𝜎 𝑢𝑃 is the variance of the known parameters  𝑢𝑃, 𝑆𝑓𝑖𝑛𝑎𝑙 is the 

matrix of variance and covariance. The values of 𝜎𝑚𝑝
 can be estimated with the errors on the 

known parameters during measurements of 𝑉3𝜔 𝑟𝑚𝑠 for chromel wire represented as εI=0.1%, 

εR=0.5%, εαe=0.5%, εD=0.2%, εL=2.8%. During the measurements for carbon fiber, the error is 

similar to the chromel except in case of the diameter for which 𝜀𝐷 = 5.1% predicted from Table 

4. The diagonal terms of 𝑆𝑓𝑖𝑛𝑎𝑙 represent the variances 𝜎𝑢𝑃
2 of the estimated parameters  𝑢𝑃 (k or 

Cp) including the effect of the uncertainty of the known parameters. For a 95% confidence band, 

the relative uncertainty 𝜀𝑢𝑃 on parameter 𝑢𝑃 is obtained using 𝜀𝑢𝑃 =1.96 𝜎𝑢𝑃/𝑢𝑃. 

7. Thermal Conductivity Measurements for Single Fiber 

In this section, results for the measured axial thermal conductivities and volumetric heat 

capacity of carbon fibers are presented. Initially the results for validation of 3ω method and the 

experimental setup is shown using the chromel wire as a reference material. Then results 

implementing 3𝜔 method for PAN carbon fibers are shown. As discussed in the section 5.3, it’s 

very important to verify that the thermal contact resistance (TCR) between the sample and 

electrode is low or not. So the measurement of TCR is shown in the last section to correct the 

measured apparent thermal conductivity of the fiber.  

7.1 Validation with Chromel Wire 

A chromel wire with 13.62µm diameter and 1.62mm length was chosen to test the 3𝜔 

method.  Its diameter was checked to be fairly constant with perfectly circular cross-section over 

the length. A 6mA current is passed through the sample and all the necessary experimental steps 

(section 5) are followed. Figure 1.22 shows the experimental test performed in vacuum for a 
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frequency range of 1 to 100 Hz. This data is fitted with the analytical model (Eq. 1.26) to estimate 

the axial thermal conductivity and volumetric heat capacity for chromel wire as shown in Table 

6. The experiments conducted under vacuum showed very good agreement of the measured values 

for thermal conductivity and heat capacity with the reference values from the literature. The 

overall uncertainties in the measurement of thermal conductivity and heat capacity for chromel 

are ~2.9% and ~1.3% respectively (section 6). Furthermore the parameter estimation (Table 6) 

using the numerical model for vacuum are also consistent with previous results of analytical 

model.  

In section 3.4 a hypothetical test case was shown that could quantify the effect of 

performing experiment under atmospheric conditions on the estimation of the axial thermal 

conductivity. In the experiments, further tests were carried out for justifying the initial hypothesis 

by performing experiments under atmospheric conditions. Figure 1.22 shows this experimental 

result for a frequency range of 1 to 100 Hz. The thermal conductivity estimated from the analytical 

model fitting with this experiment is very unrealistic and with a discrepancy of ~390% from the 

reference value (Table 6).  

Using the numerical model for fitting experimental data required a correct prediction of the 

heat transfer coefficient. Although the diameter of the chromel wire is constant, the temperature 

rise in 3𝜔 method is from 0.1K to 1K[48] and thus the heat transfer coefficient[39][40] was 

approximated to be ranging from 450-740 Wm-2K-1. The impact of the range of heat transfer 

coefficient is shown in the estimation of the thermal properties, leading the estimation of thermal 

conductivity to a range of value. Furthermore, it can be realized that the volumetric heat capacity 

estimation is not affected by the convective heat loss. In addition, one should note that the used 

correlations for heat transfer coefficient prediction [34][35] were established for steady state 

regimes and not for periodic ones as in the case of 3ω method. Otherwise without using 

correlations, one could have estimated simultaneously the thermal conductivity and the heat 

transfer coefficient but the sensitivity coefficients to these two parameters are strongly correlated. 

This was shown by the minimization of error between numerical and experiments give infinite 

number of minima that is a function of heat transfer coefficient and thermal conductivity. Thus, 

making simultaneous estimation of both unknown parameters impossible. 
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Figure 1.22: Measurements for chromel wire with vacuum and atmospheric conditions and 

fitting with analytical model 
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Table 6: Thermal properties measured for chromel wire by fitting with the analytical model 

under vacuum and atmospheric conditions (* h=450, § h=740) 

7.2 PAN Carbon Fibers 

The 3𝜔 method was then used to estimate the thermal properties for the two PAN carbon 

fibers FT300B and FT800H. From the study of experiments under atmospheric condition, it was 

quite obvious that the convective loss played a huge role in the estimation of thermal properties 

by 3𝜔 method. Additionally the small diameter and irregular cross section (Figure 1.18) of the 

carbon fiber makes the prediction of thermal conductivity extremely more sensitive to the 

convective heat losses. Thus the 3𝜔 method for carbon fibers were only tested under vacuum as 

shown in Figure 1.19(c).  

For FT300B and FT800H carbon fibers multiple samples with different lengths (Table 4) 

were tested. The experimental results for 𝑉3𝜔 𝑟𝑚𝑠 are highly reproducible for each sample. Figure 

1.23 shows the experimental 𝑉3𝜔 𝑟𝑚𝑠 with a 1 to 100 Hz frequency range performed in a vacuum 

chamber by passing 1mA of current on different fibers. Four samples of FT300B and two samples 

FT800H were tested with 3𝜔 method. After analytical model fitting, the thermal conductivity and 

heat capacity for the carbon fibers are estimated and compared with the data provided by the fiber 

supplier (Toray Industries) as shown in Table 7. The uncertainties in the measurement of thermal 

conductivity and heat capacity are ~8.1% and ~4.9% respectively for these carbon fibers, as 

estimated from the uncertainty analysis described in section 6. 
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(a)                                                                                    (b) 

Figure 1.23: (a) Measurements for FT300B carbon fiber with vacuum and multiple sample 

lengths, (b) Measurements for FT800HB carbon fiber with vacuum for a sample length of 1.56mm 

and 1.28mm. 

Thermal 

Properties 

 Measured Reference[41][42] 

  Analytical Model Numerical Model  

k( Wm-1K-1) 
Vacuum 18.15 18.27 

17.3 Atmospheric 70.15 18.51*-25.82§ 

ρCP( MJ m-3K-1) 
Vacuum 3.68 3.81 

3.85 Atmospheric 3.62 3.81*-3.83§ 
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Table 7: Thermal properties estimation for carbon fibers. 

7.3 Thermal Contact Resistance between sample and copper electrodes 

The analytical and numerical models work with an assumption of perfect thermal 

contact between the sample and copper electrodes, which is impossible to achieve in 

practice. Therefore an estimation of thermal contact resistance was done from the 

measured values of thermal conductivity with different sample lengths. For each sample 

the overall thermal resistance (L/k) is calculated. Figure 1.26 shows the variation of the 

overall thermal resistance with length for the fiber FT300B.  

The measured thermal resistances can be fitted with a linear regression. The y 

intercept of this plot gives the thermal resistance when the fiber length is 0 that can be 

interpreted as the global thermal contact resistance with the value of 8.83 10-6 m2KW-1. 

This value is compared with the intrinsic thermal resistance at each length of the carbon 

fiber sample (~10-4 m2KW-1). In the 3𝜔 method, overall effect of the thermal contact 

resistance (TCR) over the thermal resistance (TR) at each length, therefore less than 7% 

(~TCR/TR).  The inverse of the slope of the linear regression provides the final value of 

the thermal conductivity of the FT300B carbon fiber which is equal to 10.82 Wm-1K-1. 
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Figure 1.24: Thermal resistance vs length for FT300B 

 

 FT300B Reference[43] 

Thermal 

Properties 

Sample 1 Sample 2 Sample 3 Sample 4 Supplier 

datasheet 

k( Wm-1K-1) 10.11 10.03 10.17 10.28 10.47 

ρCP( MJ m-3K-1) 1.35 1.38 1.37 1.37 1.39 

 FT800H  

k( Wm-1K-1) 34.59 34.88   35.13 

ρCP( MJ m-3K-1) 1.37 1.37   1.36 
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8. Partial Conclusions 

In this chapter, the 3𝜔 method is used for estimating the axial thermal conductivity and 

volumetric heat capacity of single carbon fiber. A detailed derivation of the analytical model  from 

Lu et al.[10] demonstrated that it can work by imposing multiple mathematical and physical 

assumptions. These assumptions are imposed in terms of the pre-requisites that are necessary to 

perform 3𝜔 test on any sample. Due to the application of analytical model, which is limited by 

the assumption of surrounding as a vacuum, it is crucial to quantify the effect of convection in 

3𝜔 method. Thus a complete numerical model was developed that can take into account not only 

the periodic heating due to the alternating current but also the convective heat loss. The 

comparison between the analytical and numerical model was done by calculating the 3𝜔 response 

for same working conditions. Despite multiple assumptions of analytical model under vacuum, it 

was observed that the 3𝜔 response from the numerical model is remarkably similar except for a 

lower frequency with a difference of less than 1.6%. This result emphasized in validation of the 

analytical model for our experimental setup under vacuum.  

Even though most research in the literature focused on simplifying the analytical model for 

making estimation of each parameters in different frequency range, our focus was to use the 

complete analytical model for estimating the axial thermal conductivity along with heat capacity 

simultaneously. This was possible by selecting a proper frequency window. To determine the 

working frequency window for our experiments, a sensitivity analysis was done over each sample 

and it was observed that the length of the sample is an important factor. Thus an optimum length 

was chosen where the sensitivity of each unknown parameter is high.  

For carrying out the experiments a constant current source with differential amplifier was 

used to extract the 3𝜔 response of the voltage. The setup for 3𝜔 method was validated by 

performing test on chromel wire under vacuum. The results showed a good agreement of the 

estimated thermal conductivity and heat capacity with the values from literature. The importance 

of experimenting only under vacuum condition was proven by quantifying the influence of 

convective loss on the estimation of thermal conductivity using this analytical model. It showed 

an increase in the estimated thermal conductivity value by 390% from the literature. Although the 

numerical model can somehow take into account the convective losses, the wide range value of 

heat transfer coefficient from known correlation makes the estimation of thermal conductivity is 

very questionable. For carbon fiber this problem becomes more prominent due to the smaller and 

varying diameter of the fiber.  

The thermal properties of carbon fiber of type FT300B and FT800H are also estimated 

using 3𝜔 method under vacuum. They are found out to be consistent with the data from literature 

and supplier. The higher uncertainty in the measurement for carbon fibers is mainly due to the 

discrepancy of the diameter through the length of samples. At the end, the uncertainty due to the 

thermal contact between the fiber and sample holder is also studied. The sum of the two thermal 

contact resistances at both fiber ends was also estimated to be less than 7% of the overall sample 

thermal resistance thus the influence on the measurement of thermal conductivity is small.  
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From this chapter, the application of 3𝜔 method to estimating axial thermal conductivity 

is successfully studied. But for full characterization of thermal properties for carbon fiber, it is 

extremely important to work not only on the axial but also on the radial heat transfer. In the next 

chapter the application of 3𝜔 method to estimating the radial thermal conductivity is discussed.  
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1. Introduction 

A large part of the composite materials used in the industry today is composed of carbon fibers 

impregnated within a thermosetting or thermoplastic matrix. In most composite applications or 

composite manufacturing problems, one considers quite thin parts (plates or shells) where the 

dominant mode of heat transfer is in the transverse (out-of-plane) direction. In this transverse 

conduction mode, the radial conductivity of fibers is of major importance. It is thus necessary to 

estimate not only the axial thermal conductivity but also the radial thermal conductivity of the fiber. 

Despite the high interest of determining the anisotropic features of the carbon fibers, the experimental 

determination of the radial thermal conductivity of a single fiber is still a big challenge within the 

research community.  

In this chapter, the objective was to verify the possibility of using the 3ω method for radial 

thermal conductivity measurement. In reference to the thesis of Liang[1], a similar analytical model 

is shown in section 4.1. A 1D numerical model was also developed that could validate the analytical 

model (section 4.2). A 2D finite element model is developed using Comsol (section 4.3) to check the 

presence of longitudinal temperature gradient as it could influence the estimation of radial thermal 

conductivity. A sensitivity analysis was done to choose the working frequency window to obtain 

higher accuracy in the measurement (section 5). An experimental work was also executed on the 

single fiber FT300B to estimate the radial thermal conductivity and to check the accuracy of its 

measurement (section 6).  

2. Literature review 

Previous researches mostly focused on the effective transversal conductivity at the scale of 

composite[2–5] and rather less focus was given to the microscale properties.  In the literature, only a 

couple of experimental approaches are present for the determination of the radial thermal conductivity 

of a single fiber. In the research article by Huang et al [6], the transverse thermal conductivity of a 

pitch-based carbon fiber was measured by a custom-designed thermal conductivity measurement 

system based on steady-state heat flux measurement (ASTM C177-10) [7]. In the ASTM standard 

technique, the measured specimen is positioned between two reference heaters held at two different 

temperatures using thermal grease to reduce the interfacial thermal contact resistance between the 

specimen and the heaters. The sensors are placed along the lengths of the test specimen and yield 

information on the rate of heat flow through two reference materials of known conductivities. The 

rate of heat flow can then be used to determine the thermal conductivity of the unknown specimen 

using the one-dimensional Fourier’s conduction equation.  

They also computed the in plane and out of plane thermal conductivity of graphite sheets using 

molecular dynamics and then implementing this data to compute transverse thermal conductivity for 

individual fiber using a FEM resolution. Although, this method seems to have multiple counts of 
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thermal resistance, however, no exact estimation of thermal contact resistance was provided. 

Moreover, no details was provided about the precision of the experimental setup during measurement.  

 

Figure 2.1: Simplified schematic diagram of the measurement procedure by Huang et al. 

Recently in 2019, a paper of Wang et al [8] presents anisotropic thermal conductivity tensor of 

lignin based fiber was measured. The transient electro thermal technique was used for the 

measurement of the axial thermal conductivity (𝑘𝑎) and of the volumetric heat capacity (𝜌𝐶𝑝). Then 

this data was used to determine the radial thermal conductivity (𝑘𝑟) by using frequency domain 

energy transport (FET) state Raman method. Figure 2.2 shows the basic illustration of FET Raman 

method. Two types of laser are passed through the sample, i.e. continuous wave (CW) and frequency 

modulated wave (FR). From this two Raman shift coefficients (𝛹) are obtained. These two factors 

are normalized (Ɵ) for cancelling the effect of laser absorption coefficient and temperature coefficient 

and finally obtaining a term dependent only on 𝑘𝑟, 𝑘𝑎and 𝜌𝐶𝑝. The limitation of this technique was 

concerned to the measurement of 𝑘𝑟 . A high uncertainty in the measurement of 𝑘𝑟 was observed at 

different axial position of the fiber sample. Moreover the repeatability of the results for different 

samples were not achieved during the experiments.  

 

Figure 2.2: Illustration of FET Raman method [8] 
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3. 3𝝎 method 

In the year 2014 Liang et al[1] used the 3ω method for measuring the radial thermal 

conductivity by developing an analytical model describing radial heat transfer and remodeling the 

experimental setup that was used for the longitudinal thermal conductivity measurement. They placed 

the sample in a surrounding medium of deionized water to induce radial heat transfer while 

maintaining an electrical insulation. The deionized waters also acts as a controlling environment and 

an infinite medium surrounding the fiber.  

 

Figure 2.3: Water reservoir used in the thesis of Liang[1] 

Although the experimental setup was validated by the metallic wires with less than 5% 

difference from the literature value, there was no test provided to ensure the absence of longitudinal 

temperature gradient. Furthermore, no sensitivity analysis was done to determine the working 

frequency window for the 3ω method and surprisingly the same frequency range as for the 

longitudinal thermal conductivity was used. Subsequently, in this work, the possibility of using the 

3ω method for the radial thermal conductivity was investigated by developing numerical models and 

performing an experimental test on a single PAN fiber. The water reservoir used for the sample was 

similar to the one used in the thesis of Liang and rest of the experimental setup is the same as the one 

described in chapter 1 for the measurement of the longitudinal thermal conductivity.  

4. Models for determining radial thermal conductivity 

4.1 Analytical 1D Radial Model 

This section provides a brief introduction of the analytical model for the 3ω voltage response 

of a self-heating fiber depending on the imposed frequency (ω) with dominating radial transfer. Like 

the axial direction dominated heat transfer discussed in the previous chapter, this model also assumes 

that the specimen is a uniform cylinder placed between two heat sinks (copper electrodes). An 

alternating electrical current (𝐼0sin (𝜔𝑡)) with a frequency ω is passed through the sample of radius 

𝑎 that has an electrical resistance R and a length L. The schematic diagram of the sample submerged 

in de-ionized water is shown in Figure 2.4. 
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Figure 2.4: (a) Schematic diagram of a fiber in water (b) Sample holder in water reservoir 

In the thesis of Liang[1],  an analytical model for 1D heat conduction along the radial by the 

assumption of infinite long cylinder in an infinite medium was developed. He makes the assumption 

of constant thermal conductivity along the radial direction and continuity of temperature along the 

interface between the fiber and the surrounding medium. He also assumes no radiative nor convective 

heat losses. The radial heat transfer equation with a power generation from passing alternating current 

through the sample can be written as follows:  

𝜌𝐶𝑃
𝜕

𝜕𝑡
 𝑇1(𝑟, 𝑡) − 𝑘𝑅 (

𝜕2𝑇1
𝜕𝑟2

+
1

𝑟

𝜕𝑇1
𝜕𝑟
) = 𝑃 

(2.1) 

where 𝑘𝑅  is the radial thermal conductivity, 𝜌𝐶𝑃volumetric heat capacity of fiber and 𝑃  is the 

volumetric electrical power source. The heat transfer equation for water with thermal conductivity 

𝑘𝑤 and volumetric heat capacity 𝜌𝑤𝐶𝑝 𝑤 reads:       

𝜌𝑤𝐶𝑝 𝑤
𝜕

𝜕𝑡
𝑇2(𝑟, 𝑡) − 𝑘𝑤 (

𝜕2𝑇2
𝜕𝑟2

+
1

𝑟

𝜕𝑇2
𝜕𝑟
) = 0 

(2.2) 

    The boundary and initial condition are:    

{
 

 𝑎𝑡 𝑟 =  𝑎:   𝑇1 = 𝑇2 𝑎𝑛𝑑   𝑘𝑅 
𝜕𝑇1
𝜕𝑟
|
𝑎
= 𝑘𝑊 

𝜕𝑇2
𝜕𝑟
|
𝑎
                               

𝑎𝑡  𝑟 →  ∞:   𝑇2 = 𝑇0
𝑎𝑡 𝑡 = 0: 𝑇1 = 𝑇2 = 𝑇0

 

(2.3) 

 T1  and  T2 are the respective temperature of the sample and surrounding water at position r and time 

t. Focusing now only in the temperature fluctuations around the average value, we take a similar 

approach to the one described in chapter 1 and use the notion of complex temperature  𝑇 =

𝑇̃ 𝑒2𝑗𝜔𝑡with power𝑃 = 𝑃̃ 𝑒2𝑗𝜔𝑡 to transform the system of equations in Fourier’s space. The space 

and time derivatives in Eq. 2.1 and 2.2 therefore become  

Fiber 

Volumic Power 

De-ionized Water 

a 

Sample 

Holder 
Water 
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𝜕𝑇

𝜕𝑟
=
𝜕𝑇̃

𝜕𝑟
𝑒2𝜔𝑗𝑡 ,

𝜕2𝑇

𝜕𝑟2
=
𝜕2𝑇̃

𝜕𝑟2
𝑒2𝜔𝑗𝑡,

𝜕T

𝜕t
= 2ωjT̃𝑒2𝜔𝑗𝑡 

(2.4) 

For periodic regimes, Eq. 2.1 becomes:  

𝜕2𝑇1̃
𝜕𝑟2

+
1

𝑟

𝜕𝑇1̃
𝜕𝑟

−
2𝜔𝑗𝑇1̃𝜌𝑅𝐶𝑃𝑅

𝑘𝑅
= −

𝑃̃

𝑘𝑅
 

(2.5) 

If  𝑢 = 𝛼1𝑟,  Eq. 2.5 can be written as  

𝜕2𝑇1̃
𝜕𝑢2

+
1

𝑢

𝜕𝑇1̃
𝜕𝑢

−  𝑇1̃ = −
𝑃̃

𝛼1
2𝑘𝑅

 
(2.6) 

The solution without a 2nd member is provided by Bessel’s functions: 

 𝑇1̃ = 𝐴3𝐼0( α1𝑟) + 𝐴4𝐾0( α1𝑟),  𝑇2̃ = 𝐴1𝐼0( α2𝑟) + 𝐴2𝐾0( α2𝑟) (2.7) 

where I0 and K 0 are the first and second kind modified Bessel functions respectively and the equation 

for the constants α1and α2  are defined in Eq. 2.23 and 2.24 respectively. In the following, the 

mathematical derivations for 𝐴1,  𝐴2, 𝐴3, 𝐴4 is provided so that Eq. 2.7 can be used directly for the 

solution. Using boundary conditions for  𝑇2̃, we have  

lim
𝑟→∞

𝐼0(α2𝑟) = +∞ ,    lim
𝑟→∞

𝐾0(α2𝑟) = 0 (2.8) 

 

 𝑇2 ̃ can be further solved as 

{
𝐴1 = 0   

 𝑇2̃ = 𝐴2𝐾0(α2𝑟)
 

(2.9) 

For   𝑇1̃ with the 2nd member (source term), we have: 

𝑎𝑡 𝑟 = 0     
𝑑𝑇1̃
𝑑𝑢

= 0, 𝑎𝑡 𝑟 = 𝑎     𝑇1̃(𝑅) =  𝑇2̃(𝑅) 𝑎𝑛𝑑 𝑘𝑅
𝑑𝑇1̃
𝑑𝑟

= 𝑘𝑊
𝑑𝑇2̃
𝑑𝑟

 
(2.10) 

With the 2nd member the particular solution is  

 𝑇1̃ =
P̃

𝛼1
2kR

 
(2.11) 

Therefore for  𝑇1̃ the solution is 

 𝑇1̃ = 𝐴3𝐼0( α1𝑟) + 𝐴4𝐾0( α1𝑟) +
P̃

𝛼1
2kR

 
(2.12) 

With the boundary conditions we have at r=0, u=0 and 𝐴4 = 0 :  

 𝑇1̃ = 𝐴3𝐼0( α1𝑟) +
P̃

𝛼1
2kR

 
(2.13) 
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If we use the interfacial boundary conditions  𝑇1̃(𝑎) =  𝑇2̃(𝑎) we have 

𝐴3𝐼0( α1𝑟) +
P̃

𝛼1
2kR

= 𝐴2𝐾0(α2𝑟) 
(2.14) 

𝑘𝑅 
𝜕𝑇1

𝜕𝑟
|
𝑎
= 𝑘𝑊 

𝜕𝑇2

𝜕𝑟
|
𝑎
→ 𝑘𝑅𝐴3α1𝐼1( α1𝑎) = 𝑘𝑊𝐴2α2(−𝐾1(α2𝑎))   

(2.15) 

𝐴2
𝐴3
= −

𝑘𝑅α1𝐼1( α1𝑎)

𝑘𝑊α2𝐾1(α2𝑎)
 

(2.16) 

Eq. 2.14 transforms to  

P̃

𝐴3𝛼1
2kR

=
𝐴2
𝐴3
𝐾0(α2𝑎) − 𝐼0( α1𝑎) =  −

𝑘𝑅α1𝐼1( α1𝑎)

𝑘𝑊α2𝐾1(α2𝑎)
𝐾0(α2𝑎) − 𝐼0( α1𝑎)  

(2.17) 

Therefore 𝐴3 is 

𝐴3 = −
P̃

𝛼1
2kR𝐼1( α1𝑎)

, with    =
𝑘𝑅α1𝐾0(α2𝑎)

𝑘𝑊α2𝐾1(α2𝑎)
+
𝐼0( α1𝑎)

𝐼1( α1𝑎)
 

(2.18) 

and the expression of temperature becomes  

 𝑇1̃ = −
P̃𝐼0( α1𝑎)

𝛼1
2kR𝐼1( α1𝑎)

+
P̃

𝛼1
2kR

 
(2.19) 

The corresponding analytical solution for the average temperature rise 𝑇1̃
̅̅̅̅  in the fiber with imposed 

frequency 𝜔  can be written as: 

 𝑇1̃ = −
P̃𝐼0( α1𝑎)

𝛼1
2kR𝐼1( α1𝑎)

+
P̃

𝛼1
2kR

 
(2.20) 

 𝑇1̃
̅̅̅̅ =

1

𝜋𝑎2
∫  𝑇1̃2𝜋𝑟𝑑𝑟
𝑎

0

=
2𝜋

𝜋𝑎2
[∫

𝐴3𝐼0( α1𝑟)α1
α1

𝑟𝑑𝑟 + ∫
P̃

𝛼1
2kR

𝑟𝑑𝑟
𝑅

0

𝑎

0

] 
(2.21) 

 𝑇1̃
̅̅̅̅ =

𝑃̃𝑎2

𝛼1
2𝑘𝑅

[1 −
2

𝛼1
] 

(2.22) 

where 

𝛼1 = √
2𝜔𝑗

𝑎1
=
(1 + 𝑗)

𝛿1
, 𝛿1 = √

𝑘𝑅
𝜔𝜌𝑅𝐶𝑃𝑅

= √
2𝑘𝑅

4𝜋𝑓𝜌𝑅𝐶𝑃𝑅
 

(2.23) 

𝛼2 = √
2𝜔𝑗

𝑎2
=
(1 + 𝑗)

𝛿2
, 𝛿2 = √

𝑘𝑊
𝜔𝜌𝑊𝐶𝑃𝑊

= √
2𝑘𝑊

4𝜋𝑓𝜌𝑊𝐶𝑃𝑊
 

(2.24) 

From this data, the 3 fluctuations of voltage can be estimated as 



Chapter 2: Application of the 3ω method to the Radial Thermal Conductivity of single carbon fibers 

51 

 

𝑉3𝜔 𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅
′‖ 𝑇1̃
̅̅̅̅ ‖ (2.25) 

Again fitting this model with the experimental results may provide the estimation of the radial thermal 

conductivity (𝑘𝑅) of the specimen. Eq. 2.25 is similar to the one for the analytical model developed 

by Liang [1] if we correct the definition of  - top of p. 63 in his PhD report. Indeed in Liang’s PhD, 

one can notice a mistake: the index of the two materials for the thermal diffusivity ratio should be 

permuted, due to the implementation of the inner boundary condition at r=a. 

4.2 Numerical Finite Difference 1D Model 

A numerical model was developed to analyze the radial heat transfer by 3ω method, similar to 

the one for the longitudinal heat transfer, with the objective of validating the analytical radial model. 

For a system with radial direction dominated heat transfer, finite difference method was used to solve 

the 3ω voltage response for the fiber submerged in de-ionized water.  

 

Figure 2.5: Schematic diagram for numerical model in 1D for the fiber in water 

In the case of constant thermophysical parameters, the heat transfer can be described by the 

following polar coordinate partial differential equation with k dependent on the position (fiber or 

water) and P only present in the fiber: 

𝜌𝐶𝑝
𝜕

𝜕𝑡
 𝑇(𝑟, 𝑡) − 𝑘 (

𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
) = 𝑃 

(2.26) 

As detailed previously, the complex form of the above equation is  

𝜕2𝑇̃

𝜕𝑟2
+
1

𝑟

𝜕𝑇̃

𝜕𝑟
−
2𝜔𝑗𝑇̃

𝑎1
= −

𝑃̃

𝑘
 

(2.27) 

With central discretization of 𝑇̃ 

𝜕2𝑇̃

𝜕𝑟2
=
𝑇̃𝑖+1 − 2𝑇̃1 + 𝑇̃𝑖+1

∆𝑟2
,
𝜕𝑇̃

𝜕𝑟
=
𝑇̃𝑖+1 − 𝑇̃𝑖−1

2∆𝑟
 

(2.28) 

De-ionized water 

Fiber 
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where, I = 1,2,3…. are the number of nodes starting from 1 (i.e. the center of the fiber cross-section 

shown in Figure 2.5). Since,  𝑇 = 𝑇̃𝑒2𝜔𝑗𝑡 ;  𝑃 = 𝑃̃𝑒2𝜔𝑗𝑡  and using central difference of T on r, the 

Eq. 2.27 can be simplified 

𝑇̃𝑖+1 − 2𝑇̃1 + 𝑇̃𝑖−1
∆𝑟2

+
1

𝑟

𝑇̃𝑖+1 − 𝑇̃𝑖−1
2∆𝑟

= −
𝑃̃

𝑘
+ 𝑗

2𝜔

𝑎1
𝑇̃𝑖 

(2.29) 

(1 −
∆𝑟

2𝑟
) 𝑇̃𝑖−1 − 2(1 + 𝑗

2𝜔

𝑎1
∆𝑟2) 𝑇̃𝑖 + (1 +

∆𝑟

2𝑟
) 𝑇̃𝑖+1 = −

𝑃̃

𝑘
∆𝑟2 

(2.30) 

     

It can be further simplified as 

    (1 − Ɵ)𝑇̃𝑖−1 + 𝛽𝑇̃𝑖 + (1 + Ɵ)𝑇̃𝑖+1 = 𝛺 (2.31) 

 where 

    Ɵ =
∆𝑟

2𝑟
 ,  𝛽1 = −2(1 + 𝑗

𝜔𝜌𝐶𝑝

𝑘𝑅
∆𝑟2), 𝛽2 = −2(1 + 𝑗

𝜔𝜌𝑊𝐶𝑃𝑊
𝑘𝑊

∆𝑟2), (2.32) 

    𝛺1 = −
𝑃̃

𝑘𝑅
∆𝑟2   ;    𝛺2 = 0  (no heat generation in the medium),         (2.33) 

   ∆𝑟 =
𝑅

𝑀−1
, 𝑟𝑖 = (𝑖 − 1)∆𝑟. (2.34) 

The boundary conditions on nodal terms are:  

{
𝑎𝑡 𝑖 =  1;   𝑟 =  0  →    𝑇̃𝑖−1 = 𝑇̃0 = 𝑇̃2 

𝑎𝑡 𝑖 =  𝑁 − 1;   𝑟 =  𝑅𝐻  →    𝑇̃𝑖−1 = 𝑇̃𝑁 = 0 
 

(2.35) 

Interfacial condition involves the following equations:   

𝑘𝑅
𝑇̃𝑀−𝑇̃𝑀−1

∆𝑟
= 𝑘𝑊

𝑇̃𝑀+1−𝑇̃𝑀

∆𝑟
    ,     𝑇̃𝑀−1 − (1 +

𝑘𝑊

𝑘𝑅
) 𝑇̃𝑀 +

𝑘𝑊

𝑘𝑅
𝑇̃𝑀+1 = 0 (2.36) 

The discrete matrix representation for the temperature distribution in the fiber and water is 

i=2 

i=3 

 

i=M-1 

 

i=N-1 
[
 
 
 
 
 
 
 
 
𝑇̃2
 𝑇̃3
⋮
⋮
⋮

 𝑇̃𝑀−1
⋮
⋮

𝑇̃𝑁−1 ]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
𝛽1 2 0 … … 0

1 − Ɵ 𝛽1 1 + Ɵ 0 … 0
0 1 − Ɵ 𝛽1 1 + Ɵ … 0
⋮ ⋮ ⋱ ⋱ ⋱ 0
⋮ ⋮ 0 ⋱ ⋱ ⋮
0 0 0 0 1 − Ɵ 𝛽2
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
⋮ ⋮ ⋮ 1 − Ɵ 𝛽2 1 + Ɵ
0 0 … 0 1 − Ɵ 𝛽2 ]

 
 
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
 
 
 
 𝛺1
 
⋮
⋮
⋮
 𝛺1
0
⋮
⋮
0 ]
 
 
 
 
 
 
 
 
 

                       (2.37) 

 (35) 

Fiber 

Water 
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The complex form of the temperature rise at all nodes (𝑇̃2, 𝑇̃3… 𝑇̃𝑁−1) can be estimated by 

solving this linear system. The modulus of the average of this temperature rises over all nodes (1 to 

M) gives the average radial temperature rise 𝑇𝑎𝑣 of the sample for certain frequency:  

𝑇𝑎𝑣 = ‖∑𝑇̃𝑖

𝑁

1

‖ /𝑁 

(2.38) 

The overall voltage response at each frequency measured in 3𝜔  method is the modular 

𝑉3𝜔 𝑟𝑚𝑠 of the sample and can be expressed as follows:  

𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠(𝑅0 + 𝑅0𝛼𝑒𝑇𝑎𝑣) = 𝑓(𝜔) + 𝑔(3𝜔) (2.39) 

𝑉3𝜔 𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅0𝛼𝑒𝑇𝑎𝑣 (2.40) 

Thus, a frequency dependent 𝑉3𝜔 𝑟𝑚𝑠 was estimated by this 1D numerical model. 

4.3 Numerical Finite Element 2D Model 

The 3ω method for radial thermal conductivity requires a strong thermal gradient along the 

radius of the fiber. However, as it will be observed later in this chapter, there is also a presence of 

axial heat transfer along the fiber. Therefore, a 2D finite element numerical model was developed 

using Comsol Multiphysics 5.3. An axis-symmetrical model is created as shown in Figure 2.6. The 

width (w) of the surrounding medium was obtained from the 1D model by verifying the distance 

above which there is no direct influence of the boundaries on the estimation of 𝑉3𝜔 𝑟𝑚𝑠 (section 4.4).   

 

 

 

 

Figure 2.6: Geometry for 2D finite element 

The anisotropy in thermal conductivity of the fiber was introduced in the material property by 

using the longitudinal thermal conductivity determined from the initial 3ω method (chapter 1) and 

assuming a certain value of radial thermal conductivity. The fiber is also acting as a heat source by 

the current passing over its length.  

Frequency domain perturbation model from Comsol 5.3 was used to calculate the temperature 

rise depending on different frequencies and the heat source (fiber).  

𝑗𝜔𝜌𝐶𝑝𝑇 + ∇. (−𝑘∇𝑇) = 𝑃 (2.41) 

where 𝑘 involves the axial and radial thermal conductivity values as shown in Table 2.1. The 

initial condition is with imposed room temperature (293.15K) and the external boundaries are also 

T0=293.15 K 

Fiber 

De-ionized water 
w 

L 

Axis symmetry 
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with imposed temperature of 293.15K. The 𝑉3𝜔 𝑟𝑚𝑠over the sample is calculated by the complex 

temperature rise in the sample over the wide frequency range of 1-105 Hz (Eq. 2.40).  

4.4 Comparison between analytical, numerical 1D and numerical 2D 

In this section, different models are compared by the value of 𝑉3𝜔 𝑟𝑚𝑠 obtained for the fiber of 

length 1.5mm and diameter 7µm by passing 1mA current under similar given initial and boundary 

condition. The input parameters for different models are as shown in Table 2.1. 

 

Thermal Properties Fiber Water 

𝜌𝐶𝑝(MJ m-3K-1) 1.3 106 4.17e6 [9] 

Joule Heat source(Wm-3) 3.8 1010 - 

1D model 𝑘𝑅(Wm-1K-1) 𝑘𝑅 =1 0.59 [10] 

2D model k(Wm-1K-1) 
[
𝑘𝑅 = 1 0
0 𝑘𝐿 = 10.4

] 
0.59 [10] 

Table 2.1: Material Properties of fiber and water for the models 

Before doing the comparison, it is necessary to check that the width of the surrounding medium 

is sufficient to obey the condition of an infinite surrounding. This was verified by comparing  𝑉3𝜔 𝑟𝑚𝑠 

for different widths of the surrounding de-ionized water. From Figure 2.7(a), it is determined that the 

water with a width of more than 0.15 mm is sufficient for the boundaries with no influence on the 

calculation of 𝑉3𝜔 𝑟𝑚𝑠 of the fiber.  
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   (a)       (b) 

Figure 2.7: (a) 𝑽𝟑𝝎 𝒓𝒎𝒔 at 1Hz with changing the width of the surrounding medium. (b) 𝑽𝟑𝝎 𝒓𝒎𝒔 Versus 

frequency for comparing analytical and numerical 1D model with Numerical 2D Finite element model. 
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Figure 2.7(b) shows the comparison between the 1D analytical and 1D numerical models, along 

with the 2D finite element based numerical model. It is evident that both 1D models are in good 

agreement for the overall frequency range, as both models have the same assumption and boundary 

condition. On the contrary, the finite element 2D model is not exactly following the same trend as the 

two other models. This is due to the impact of longitudinal thermal conductivity on the computation 

of the 𝑉3𝜔 𝑟𝑚𝑠. Thus neglecting completely the longitudinal heat flow is still questionable. Further, it 

is necessary to perform a sensitivity analysis for the radial thermal conductivity in order to find a 

frequency zone where the estimation of radial thermal conductivity would be feasible.   

5. Sensitivity Analysis 

This study was performed with the analytical 1D radial thermal model therefore the estimation 

of the radial thermal conductivity is insensitive to the change in length. From the sensitivity analysis, 

one seeks for a frequency range where the 3 measurement provides the best estimation of radial 

thermal conductivity. This study was done similar to the sensitivity coefficient equation used in 

section 4 of chapter 1. Figure 2.8(a) shows the sensitivity coefficients for the 𝑉3𝜔 𝑟𝑚𝑠 versus the 

frequency. It is observed that the sensitivity is better at higher frequency range (103 Hz – 105 Hz), but 

the overall maximum value of sensitivity coefficients is rather small (<0.07 if we use water as 

surrounding medium where 𝑘𝑤 =0.59 Wm-1K-1). It was also seen that increasing the thermal 

conductivity (𝑘𝑤 ) of the infinite medium around the fiber improved significantly the sensitivity 

coefficients (Figure 2.8(a)). Indeed, if we increase kw from 0.059 (insulation material) to 0.59 Wm-

1K-1 (water), the sensitivity 𝑋∗𝑘𝑟 increases by 6 times which justifies the use of water. Further increase 

of kw to 5.9 Wm-1K-1 would have been very interesting with respectively a 2.5 and 4 times  𝑋∗𝑘𝑟 

increase with respect to the case of water. However, practically it is difficult to have a material with 

such a high conductivity that would be easy to implement around the fibers. Indeed, the sensitivity 

coefficients stay very small compared to the ones of the axial thermal conductivity parameter and 

especially at low frequency. For example at 10 Hz, the reduced sensitivity coefficients for 𝑘𝑅 and 𝑘𝐿 

are respectively around 0.06 and 0.9 (with L=1.5mm). Additionally Figure 2.8(b) shows the value of 

𝑉3𝜔 𝑟𝑚𝑠 for different radial thermal conductivity values. It can be checked to be weakly sensitive to 

the change in radial thermal conductivity of the fiber especially for value above 1 W m-1K-1. Thus the 

uncertainty analysis should provide a much larger uncertainty along with the confidence band for 𝑘𝑅 

estimation than 𝑘𝐿.  
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            (a)       (b) 

Figure 2.8: (a) Sensitivity analysis of the 𝑽𝟑𝝎 𝒓𝒎𝒔voltage to the radial thermal conductivity with varying 

𝒌𝑾 (b) 𝑽𝟑𝝎 𝒓𝒎𝒔 with frequency for different 𝒌𝑹, analysis performed with the analytical 1D radial 

model 𝒌𝑾 = 𝟎. 𝟓𝟗 W m-1K-1. 

6. Experimental test for radial thermal conductivity  

6.1 Fitting with 1D analytical model 

Despite the limitation of the sensitivity coefficient, test was performed with a carbon fiber 

FT300B for the estimation of the radial thermal conductivity by the 3 method. Figure 2.9 shows the 

experimental 𝑉3𝜔 𝑟𝑚𝑠  with a frequency range of 1-2500 Hz (applied limitation due to lock in 

amplifier) by passing a current of 1mA over a sample of length 1.7mm. The experimental data was 

fitted with the 1D finite analytical model for a frequency range of 1-2500 Hz as shown in Figure 2.9. 

It can be seen that the fitting is rather incoherent with the experimental data. A fitting for lower 

frequency bound of 1-100 Hz was also tested, but no significant change in the quality of the fitting 

was observed. Moreover, the obtained  𝑘𝑅(0.5 − 9) were with larger confidence bound of the fitting 

results. One possible reason for the discrepancy between the experimental result and 1D radial model 

is the presence of axial heat transfer and too low sensitivity. Its effect is suspected to modify 

significantly the shape of the 𝑉3𝜔 𝑟𝑚𝑠 evolution. Therefore, in the following section, the 2D heat 

transfer model using a finite element model will be used.  
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Figure 2.9: Experimental results for FT300B carbon fiber with diameter of 7.3 µm 

 

6.2 Fitting with 2D finite element model 

A fitting to experimental data by the 2D finite element model is presented in Figure 2.10(a). It 

can be observed that the fitting is notably improved for a frequency less than 100 Hz. The axial 

thermal conductivity was imposed from the results obtained in Chapter 1. To estimate the value of 

radial thermal conductivity, an error analysis was performed by varying the radial thermal 

conductivity from 0.1 to 4 Wm-1K-1 and in the frequency window 1-100Hz (Figure 2.10(b)). The 

model agreement is evaluated through the root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑉𝑖 − 𝑉𝑖

𝑚𝑜𝑑𝑒𝑙)2𝑁
𝑖=1

𝑁
 (2.41) 

where 𝑉𝑖  is the 𝑉3𝜔 𝑟𝑚𝑠 during experiment at different frequency points i=1,2 .. N, 𝑉𝑖
𝑚𝑜𝑑𝑒𝑙  is the  

𝑉3𝜔 𝑟𝑚𝑠 by the 2D model. From Figure 2.10(b) it can be seen that the RMSE is rather flat for a certain 

range of thermal conductivity (0.7-1.1 Wm-1K-1) where a minimum can be observed. Arguably, the 

exact solution for radial thermal conductivity lies in this range. As visible on the detailed view of 

Figure 2.10(c) which enables to precise the very minimum of the RMSE function, the radial thermal 

conductivity for the fiber FT300B can be estimated to be 0.8 Wm-1K-1. Additionally, the uncertainty 

sources in the measurement comes also from various input parameters (5.7%) as discussed in the 

section 6 of previous chapter, for longitudinal thermal conductivity. The uncertainty in the 𝑉3𝜔 𝑟𝑚𝑠 is 

approximately 15.9% leading to the overall uncertainty in the radial thermal conductivity 

measurement for carbon fiber as 23.6%. Therefore, the radial thermal conductivity value for FT300B 

is 0.8  0.19 Wm-1K-1.  
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Figure 2.10: (a) Measurements for FT300B carbon fiber with diameter of 7.3 µm and length 1.38 mm 

(b) evolution of RMSE between experimental and numerical model for different 𝒌𝑹 at frequency 

window of 1-100 Hz (c) Zoomed region of RMSE for 𝒌𝑹 between 0.7 – 1.1 Wm-1K-1 
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7. Partial Conclusion 

In this chapter, the application of the 3ω method on estimating the radial thermal conductivity 

of single carbon fiber was discussed. A detailed derivation of the analytical model along with 1D 

numerical model was shown. A further 2D finite element model was developed to verify the effect of 

the longitudinal heat transfer. It was observed that the longitudinal heat flow cannot be neglected at 

all as it ultimately affects the value of 𝑉3𝜔 𝑟𝑚𝑠. A sensitivity analysis was performed for the 3ω 

method on the basis of a purely radial transfer model and it was seen that the sensitivity of 𝑉3𝜔 𝑟𝑚𝑠for 

the radial thermal conductivity was quite low (<0.06). This intrinsically makes the estimation of radial 

thermal conductivity rather difficult and the uncertainty on results rather important. From the 

experiments on FT300B, it was observed that the 3ω method was only capable of estimating the radial 

thermal conductivity with an uncertainty of 23.6% and bigger confidence band. Apart from that, the 

fitting of the experimental and finite element model was also not coherent beyond 100Hz. The 

deviation could be because of the microstructure non-uniformity along the diameter (fiber not 

perfectly cylindrical). Yet, the exact reason of this deviation needs further investigation.  

From this chapter, it was concluded using the 3ω method the value of radial thermal 

conductivity can be predicted with large uncertainty, at least in the current configuration and the 

tested frequency range. The difficulty comes from the low sensitivity coefficient. Nevertheless, this 

first study about the radial heat transfer is very promising and would place the 3w method as good 

candidate to measure both the longitudinal and radial conductivity on two similar and rather simple 

devices. The lack of research towards the radial thermal conductivity, makes this initial contribution 

of 3ω method with high importance. It was also observed that a higher thermal conductivity of the 

surrounding medium would increase significantly the sensitivity coefficient. A perspective would be 

for example using a phase change material with higher thermal conductivity as an alternative to water.  
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1. Introduction 

Composite materials have anisotropic properties due to their complex microstructure. 

Therefore, perfect characterization of each parameter, thermal/mechanical/chemical, is necessary 

to understand the overall behavior and impact of the composite during various applications. The 

multiple scales of heterogeneities, from individual fibers, to yarns, eventually to the textile period 

and then plies imply a rich and complex multiscale analysis of the physical behavior of a 

composite. Figure 3.1 shows the schematic scaling of composite from the scale of cm to µm. A 

huge amount of research articles deal with the multiscale analysis of mechanical properties of 

composite materials [1–4]. However, the multiscale thermal analysis[5–11][5–11][5–11] is an 

area that requires more vast research as the overall strength of the composite is highly correlated 

with the thermal history. The two previous chapters dealt with the microscale characterization of 

single fibers by estimating thermal conductivity. The present chapter now focuses on the 

numerical analysis of the thermal conductivity at larger scale, using data gained experimentally 

at the micro-scale.  

 

 

 

Figure 3.1  : Multiscale of a fibrous composite 

 

In section 2 of this chapter, some basic concepts surrounding homogenization such as 

meso/macroscale division, representative elementary volume are presented, as well as different 

existing models of the literature for the estimation of the effective thermal conductivity (section 

3). In this chapter, meshes for CFRC with different types of arrangement of fibers, starting from 

square packed, random or real are presented (section 4). Real meshes in correspondence to 

industrial tapes such as those provided by Solvay and Suprem are analyzed. In later sections, 

different factors influencing the effective thermal conductivity tensor estimation such as length 

of the mesh, contrast in properties, and type of boundary conditions are also discussed (section 

5). Moreover, the homogenization in real tapes used in automated tape laying or automated fiber 

placement is also discussed (section 6).  
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2. Homogenization 

2.1 Mesoscale/Macroscale 

The heterogeneities present in fibrous composite such as the characteristic lengths (i.e. 

the diameter and length of the constituents) depends directly on the fibers considered. Generally 

remain of the order of four or hundred microns (carbon, glass, polymer, wood, etc ...), which is 

way below the macroscopic scale[12]  At this scale, it is very difficult to simulate a physical 

process over an extended domain while keeping a sufficiently fine mesh to take into account all 

local heterogeneities. Therefore, the material effective properties are estimated taking into 

account the local heterogeneities at a mediatory scale that can describe the behavior at the 

macroscopic scale as the one of a homogeneous continuous medium.  

As we are interested mainly in organic matrix fibrous composites, the matrix conductivity 

is generally low in our problems, and in any case lower, or much lower than the fiber one. In this 

context, in the longitudinal direction, it is commonly admitted that fibers largely dominate the 

heat transfer, whereas in the transversal direction, fibers, matrix and fiber/matrix interface or 

fiber/fiber contacts also come into play at a similar range. The effective properties also depend 

on the conductivity tensor of the fiber, on fiber orientation and fiber volume fraction, fiber spatial 

distribution and many more local factors. Deterministic methods such as averaging and 

homogenization methods[13] are generally used for the estimation of the effective thermal 

conductivity.  

2.2 Representative elementary volume (REV) and scale separation 

It is important to consider a larger volume known as representative elementary volume 

(REV), demonstrative of each small factors that determine the value of the effective property 

(Figure 3.2).  Beyond this scale, the effective properties remain constant and can be implemented 

to depict the thermal behavior for the macroscale composite. Solving directly at the macro scale 

with classical numerical techniques such as FEM, FVM and FDM would require a bigger mesh 

to encounter all heterogeneities (proportional to the number of local factors) and thus with a high 

computational cost. However, with REV, an intermediary region could be found that can deal 

with the local factors impact on the macro scale[13][10].  



Chapter 3: Thermal modeling of fibrous composite for estimating effective thermal conductivity tensor 

65 

 

 

Figure 3.2: Schematic representation of homogenization approach[14] d=diameter of the fiber, l= 

length of REV, L= length of macroscale 

In the thesis of Hadi Moussady[15], he discussed various definitions of REV that has been 

discussed through literature and mentioned below:    

 Hill[16]: The RVE refers to “a sample that a) is structurally entirely typical of the whole 

mixture on average, and b) contains a sufficient number of inclusions for the apparent 

overall moduli to be effectively independent of the surface values of traction and 

displacement, so long as these values are macroscopically uniform.” While a) is a 

condition to the microstructure morphology, b) expresses the RVE independency of the 

applied boundary conditions. 

  Drugan and Willis[17]: The RVE is “the smallest material volume element of the 

composite for which the usual spatially constant “overall modulus” macroscopic 

constitutive representation is a sufficiently accurate model to represent a mean 

constitutive response.”  

 Gusev[18]: The RVE is a material volume that computes the same effective properties as 

the bulk material.  

 Jiang[19]: The REV is an “infinite length scale limit, relative to the microscale in which 

the material appears uniform and the continuum concept may be applied” 

 Ostoja-Starzewski[20]: The RVE is defined by three conditions: “(i) statistical 

homogeneity (stationarity) and ergodicity; (ii) Hill condition leading to admissible 

boundary conditions; (iii) variational principle.” 

From the above definitions, the REV can be obtained either through physical, 

microstructural or morphological behavior. However for homogenization, the REV is frequently 

obtained by the constant effective properties reached after certain size.  

It is therefore interesting to get a description of the heterogeneous medium with an 

equivalent homogeneous model containing all the heterogeneities of macroscale. This then 

x z 

y 

𝑙 → [𝑙 ≪ 𝐿] 

d 

L 

Homogenized 

medium 



Chapter 3: Thermal modeling of fibrous composite for estimating effective thermal conductivity tensor 

66 

 

implies a certain scale separation between the microscopic heterogeneities, size 𝑙 and the 

macroscopic size L. This can be achieved by taking into account:  

𝜀 =
𝑙

𝐿
≪ 1 

(3.1) 

Depending on the scale separation, there can be two non-dimensional space variables 

defining the behavior, 𝑥∗ = 𝑋/𝐿 and 𝑦∗ = 𝑋/𝑙 where X is the real Cartesian coordinate at 

macroscale, 𝑥∗ is then considered as the macroscopic variable, 𝑦∗ is then considered as the 

macroscopic variable. Thus in case of heat transfer problem, the temperature variable is a function 

of these two non-dimensional space variables with 𝑇 = 𝑇(𝑥∗, 𝑦∗).  

3. Theoretical Models and Homogenization 

The techniques for calculation of the effective properties for a heterogeneous composite 

can be grouped into two parts depending on the arrangement of the fibers in the matrix[14]. 

 Simplified model- Applicable to ideal heterogeneous composite where REV is represented 

by a periodic pattern.  

 Real microstructural model- Dispersion or non-uniform distribution in the constituent 

position are difficult to be taken into account in a single model. Effective properties are 

directly numerically calculated from the microstructure by using approaches like unit cell 

method or embedded cell method.  

The simplest approach towards effective thermal conductivity estimation comes through 

rules of mixture. Modeling through the assumption of uniform temperature gradient in the 

considered direction.  

𝐾𝑎𝑥𝑖𝑎𝑙 = 𝑣𝑓𝐾𝑓 + (1 − 𝑣𝑓)𝐾𝑚 (3.2) 

where 𝑣𝑓 is the volume fraction of the fiber, 𝐾𝑓 longitudinal conductivity of fiber and  𝐾𝑚 is the 

thermal conductivity of matrix. The hypothesis for transversal thermal conductivity (𝐾∥) 

estimation involves the concept that the heat flux is constant.   

𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 =
𝐾𝑚𝐾𝑓

𝐾𝑚𝑣𝑓 + (1 − 𝑣𝑓)𝐾𝑓
 

(3.3) 

Voigt-Reuss bounds are also popularly known as mixture rule model where the phases 

are considered either in series (Reuss) or parallel (Voigt) through the thermal paths.  These two 

models then lead to a framework of the effective conductivity tensor for heterogeneous material. 

These models are applicable to any type of inclusion starting from spherical, or cylindrical[21]. 

However, slightly sophisticated approach for effective property estimation is the effective mean 

field model. In this case, the heterogeneous materials are considered to be homogenized. In the 

following section, brief descriptions of some models are presented[22]. 

Maxwell model[14]: In the work of Maxwell, effective thermal conductivity of a dilute dispersion 

of spherical particles in a continuous matrix was measured. Later, this model was improved 

depending on the type of inclusions. No thermal interaction between the filler and the matrix was 
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considered, however this was modified in one article by Hasselman [23] where he considered 

thermal resistance between the inclusion and medium. The expression for effective thermal 

conductivity is given by 

𝐾𝑀𝑎𝑥𝑤𝑒𝑙𝑙 = 𝐾𝑚
𝑣𝑓(𝑝 − 1) + 𝑝 + 1

𝑣𝑓(1 − 𝑝) + 𝑝 + 1
→ p =

𝐾𝑓

𝐾𝑚
 

(3.4) 

Rayleigh Model[24][25]: This model was developed for cubic arrays of spherical and cylindrical 

inclusions. The effective transversal thermal conductivity for cylindrical particles representation 

can be written as: 

𝐾𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ = 𝐾𝑚

[
 
 
 

1 +
2𝑣𝑓

𝐾𝑚 + 𝐾𝑓
𝐾𝑚 − 𝐾𝑓

− 𝑣𝑓 +
𝐾𝑚−𝐾𝑓
𝐾𝑚 + 𝐾𝑓

(0.3058𝑣𝑓
4 + 0.0134𝑣𝑓

8)
]
 
 
 

 

(3.5) 

Similarly, there are other models of effective conductivity in the literature such as Eshelby[26], 

Mori-Tanaka[27], Ponte Castaneda [28], Weng, Benveniste models[29] [14]. They use different 

assumptions to simplify the approach towards heterogeneities. The major disadvantage of these 

models comes from the lack of information regarding the composite microstructure and 

sometimes the strong assumptions that can induce a high deviation from reality. 

However, the bound approach accepts the disadvantage of theoretical modeling and gives 

a bound, upper and lower limit of the effective property rather than giving a single value. Two 

classical models for bound predictions are Voigt-Reuss and Hashin-Shtrikman. Compared to the 

Voigt and Reuss bounds, Hashin and Shtrikman (HS) defined a tighter bound. The importance of 

HS bound comes from the fact that this variational principle based bound is applicable for the 

inhomogeneous composite. In the case of a two-phase composite in which reinforcement is more 

conductive than the matrix, the Hashin and Shtrikman lower and upper bounds are[30] 

𝐾𝐻𝑆− = 𝐾𝑚 + 𝑣𝑓 [
1

(𝐾𝑓 − 𝐾𝑚)
+
1 − 𝑣𝑓

2𝐾𝑚
]

−1

 

𝐾𝐻𝑆+ = 𝐾𝑓 + (1 − 𝑣𝑓) [
1

(𝐾𝑚 − 𝐾𝑓)
+
𝑣𝑓

2𝐾𝑓
]

−1

 

(3.6) 

 

 (3.7) 

Derivations of the HS bounds have been improved and revised by many authors since 

they were originally developed. It should be noted that the Hashin–Shtrikman bounds, 

demonstrate divergence and become almost out of practical use for the densely packed, high 

contrast of thermal properties[30]. Although these bounds can give an expected range of the 

effective thermal property for certain volume fraction of the composite, exact estimation would 

need a numerical model to take into account the microstructural deformities.  

3.1 Modeling based on real microstructures 

The simplified theoretical models are easy to implement but the complexity in real 

geometries make direct employment of these models questionable. However, the accessibility of 

fast computers has allowed the development of advanced computational methods able to realize 
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calculations on more complete microstructures, thus reliving the standard assumptions on the 

statistical distribution of fibers and on local interactions. The main advantage of these methods is 

their flexibility since they can be applied to any kind of arrangement, and especially on real 

composite microstructures. 

Numerically the effective thermal conductivity can be determined by finite difference, 

boundary elements, finite elements, finite volume and many other methods[31]. With a finite 

difference approach, the primary disadvantage lies in the precision of the geometrical description 

of particles. Despite the presence of other numerical techniques present such as finite volume or 

boundary element, however, in this thesis the focus is using finite element method for effective 

thermal conductivity estimation.  

Generally, there are two approaches in the literature for this estimation, namely the unit 

cell approach and the embedded cell approach that are briefly described hereunder. 

 Unit cell approach- It is a simple and common approach for estimation of effective properties. 

In the literature, it was used for simple 2D to complex multiphase models for different types 

of materials. Initially, for CFRC, the simplest way to implement the unit cell approach is for 

identical fibers surrounded by a matrix layer in periodical distribution. It ignores the effect of 

variations in the inclusion type. However, many researchers have worked on the application 

of unit cell approach for multiple inclusions[32], statistical inclusion distribution[33], 

damaged matrix[34] and etc. Even if the approach is too simple to estimate accurately 

effective properties of real composites, it appears to be very efficient in the analysis of the 

effects of inclusions arrangement, inclusions volume fraction, shape or contrast. The basic 

concept of unit cell approach is to impose opposite surface of the sample with temperature 

gradient. As shown in Figure 3.3, the surface A is imposed with temperature 1K and the 

surface B is imposed with temperature 2K. Keeping the remaining surfaces at adiabatic 

condition, the heat current is from high temperature surface to low temperature as shown in 

Figure 3.3. In a steady state situation, the inward flux through surface A equals the outward 

flux through surface B. The effective thermal conductivity in the considered direction is the 

ratio of the flux over the length of the sample and the temperature difference between the 

surfaces A and B (~1K in this case).  

 

 

 

 

Figure 3.3 : Unit cell approach on small CFRC 

Generally, a unit thermal gradient is be applied along different directions in order to 

estimate the complete effective thermal conductivity tensor. This of course assumes that 

the unit cell was exactly chosen in the principal axes of the conductivity tensor, which is 

not so obvious for random microstructures. The main advantage of the unit cell approach 

is the requirement of little computational efforts for complex microstructure. However, 

B~T=2K 

A~T=1K 

L 
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over simplification can lead to certain discrepancies in the results such as using these 

techniques for large deformations, complex microstructures and/or non-linear history 

dependent constitutive behavior[22].  

 

 Embedded cell approach- It consists of integrating the cell to be studied in a homogenized 

volume whose properties are known in advance (or are the ones that one seeks) and to 

impose a mesh on the edges of the enveloping volume[14] (Figure 3.4). The core region 

that contains the discrete phase arrangement of the composite material is embedded 

within some outer region that stands for the bulk composite. The properties of the 

equivalent material are determined by any simple analytical model. The boundary 

conditions are then applied to this homogeneous material. It can be described by different 

ways. A first common approach consists in using the homogenized response of the core, 

e.g. determining it with a self-consistent manner from the behavior of the core[35][36]. 

A second way is based on the use of macroscopic constitutive laws, e.g. Knight[37] used 

semi-empirical Halpin and Tsai model so as to determine the embedding region 

properties. The embedding allows for the effect of the rest of the material and the 

influence of the interaction of other inclusions with a given inclusion on the behavior of 

the cell. The advantage of this approach comes from its capability to handle the 

microstructural complexity, however, the computational cost is higher.  

 

Figure 3.4 : Schematic diagram of embedded cell approach[38] 

3.2 Basic concept of Homogenization and Asymptotic expansions 

As discussed in the previous sections, various approaches exist to identify effective 

properties of a heterogeneous material. The non-homogeneity of the composites at different scales 

can be homogenized, depending strongly on the internal spatial distribution, the size and the 

properties of the material components and their respective interfaces. In a widely simpler case 

study used in this thesis, the objective was to deal with the unidirectional fibrous composite for 

estimating the effective thermal property. When the properties of the resin and fibers are known 

or determined by experimental approach, it is possible to define the equivalent thermal properties 

the composite material. This can be achieved by solving the asymptotic expansion, described in 

details in this section. These methods are based on a fundamental assumption of periodicity of the 

middle structure, which is sometimes the case in composite materials, or in any event within 
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idealized composite structures. We then consider a heterogeneous material whose properties are 

continuous by piece, alternating between those of the individual components. Therefore, the 

properties reproduce by periodic translation on a microscopic scale. The REV should generally 

contain a sufficient number of heterogeneities while having a small size to macroscopic 

dimensions studied. In the case of a periodic medium, the REV is reduced to the periodic cell. 

The size of the heterogeneities is then the same as the size of the REV. 

In the thesis of M. Peron[39], a detailed description of various stages of homogenization 

process in solving the transient heat transfer equation was presented. Generally, the heat transfer 

by conduction is solved in a domain Ω consisting of two phases, Ω𝑓 and Ω𝑚, each considered 

homogeneous and isotropic. The microstructure of the domain Ω is periodic and the periodic cell 

P is described. In each phase the following heat transfer equation is solved with an assumption of 

continuity of temperature at the interface of fiber and matrix:  

𝜌𝐶𝑝
𝜕

𝜕𝑡
𝑇(𝑥, 𝑦, 𝑧, 𝑡) − ∇. (𝑲∇𝑇(𝑥, 𝑦, 𝑧, 𝑡)) = 0 (3.8) 

Following the method described in the thesis and adopting the macroscopic point of view, 

we define the various quantities of the problem by using characteristic quantities: 

 ∇∗ •= 𝐿∇ •, 𝑡∗ =
𝑡

𝑡𝑐
, 𝐶∗ = 𝜌𝐶𝑝/𝐶𝑐, 𝑇

∗ =
𝑇

∆𝑇𝑐
, 𝑲∗ = 𝑲/𝑲𝒄    (3.9) 

where the quantities followed by an asterisk are the dimensionless quantities and those 

denoted by the index "c" are the characteristic quantities. By rearranging it, the previous system 

becomes. 

𝐶∗𝑇̇∗ − 𝐹𝑐 ∇
∗𝑲∗∇∗𝑇∗ = 0 → 𝐹𝑐 = 𝑲𝒄𝑡𝑐/𝐶𝑐𝐿

2 (3.10) 

Because of the separation of scales, it sets up two dimensionless variables space, 𝑥∗ and 

𝑦∗, as discussed previously. The differential operator is converted to 

 

(3.11) 

The temperature field in the form of an asymptotic expansion in powers of ε.  

 

(3.12) 

Implementing the above two equation in equation, we get 

 

(3.13) 
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This equality is a continuation in power ε which, must be true regardless of the scale 

separation ε, identifying the relationship with different levels of ε. In the thesis of M. Peron, 

depending on the power ε, the asymptotic form of heat transfer equation was simplified. The order 

of Fourier number also played an important role in finding the effective properties. It was 

concluded that the homogenizability of conductive heat transfer problem in terms of separation 

of scales and the number of Fourier number. For Fourier number of order 𝜀−1, the problem is 

homogenisable and the capacitive term is negligible to the order 0. This enables the estimation of 

effective thermal conductivity as described in the upcoming section.  The interest of the method 

of asymptotic development is from a local description of the problem to the microscopic scale 

components, it is possible to determine if a behavior equivalent homogeneous on a macroscopic 

scale is possible.  

3.3 Effective Thermal conductivity estimation for imposed boundary 

conditions 

The prediction of the effective thermal conductivity tensor of CFRC for distribution of 

fiber in a matrix in form of square packed to real tapes is possible by application of different 

boundary conditions to the heat transfer problem. In the principal axes of heat conduction and for 

a transversely isotropic material such as UD composites, the thermal conductivity tensor can be 

represented in the following matrix form  

𝑲 = [

𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 0 0
0 𝐾𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 0
0 0 𝐾𝑎𝑥𝑖𝑎𝑙

] 
(3.14) 

In general, the heat transfer equation solved for effective conductivity tensor is following.  

∇𝑦𝑲∇𝑦𝑇 = 𝑆 (3.15) 

where S is the source term. Depending on the type of boundary condition, the equation is 

transformed as follows. In case of periodic boundary condition with homogenizable asymptotic 

equation ( 𝜀−1): 

𝑆 = −∇𝑦𝑲∇𝑥𝑇
(0) → ∇𝑦𝑲∇𝑦𝑇 = −∇𝑦𝑲∇𝑥𝑇

(0) (3.16) 

The PDE was solved for 𝑇  with given macroscopic unit gradients ∇𝑥𝑇
(0) by FEM with 

FreeFem++. The effective thermal conductivity tensor (𝑲𝒆𝒇𝒇), in periodic condition, is obtained 

by solving the following equation:  

𝑲𝒆𝒇𝒇 =
1

𝑃
∫𝑲(𝑰 + ∇𝑦𝑇) 

(3.17) 

In case of classical boundary condition such as mixed, Dirichlet or Neumann: 

𝑆 = 0 → ∇𝑦𝑲∇𝑦𝑇 = 0 (3.18) 

A detailed description of application of each boundary condition cases are present in 

section 4.2. The PDE was solved for 𝑇 under different boundary condition by FEM with 

FreeFem++. With the data of T over the mesh, the flux in/ flux out is calculated and then the 

effective conductivity is estimated.  
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〈𝜑〉 =  〈𝑲∇𝑦𝑇〉/𝐿
         
→  𝑲𝒆𝒇𝒇 =

〈𝜑〉𝐿

∆𝑇
 (3.19) 

where ∆𝑇 is the difference in temperature. Overall with homogenization, the primary objective of 

existence of equivalent continuum for the heat transfer problem needs to be fulfilled. Secondarily, 

at the scale of REV, the effective properties of the homogenized medium needs to be determined. 

Thus, a spatially dependent equation at heterogeneous scale to a homogenized spatially 

independent equation is represented. In this thesis, the effective thermal conductivity tensor and 

presence of REV under different boundary conditions are estimated.  

4. Development of Framework for Effective conductivity tensor 

calculation 

4.1 Geometrical modeling 

To fully calculate the anisotropic conductivity tensor for any situation, a 3D finite element 

approach was adopted. The first step to generate a 3D mesh from a given microstructure, real or 

generated. In this chapter, three types of mesh were generated depending on the distribution of 

the fibers in the matrix, i.e. uniform square cell, random distribution and clustered distributions. 

Moreover, meshes in resemblance to the real microstructure were also generated (detailed in 

chapter 4). The geometries and meshes were generated using GMSH, a free finite element 

meshing tool. 

 Uniform square cell- Hypothetical uniformly placed fibers in a matrix were generated for 

different volume fraction starting from approximately 0.2 to 0.6 fiber volume fraction. At 

each volume fraction, multiple meshes with different number of fibers were generated 

such as for sample window 2 to 10 (Figure 3.5).  

                                               

Figure 3.5 : Evolution of size of CFRC until REV is determined 

 Random fiber generation- From the uniform square cell, a random geometry is generated 

by adding a degree of randomness to the uniform position. The degree of randomness 

(𝑑𝑅 = 𝑙𝑠ℎ𝑖𝑓𝑡/𝑟𝑓𝑖𝑏𝑒𝑟) is defined by the ratio of distance the fibers 𝑙𝑠ℎ𝑖𝑓𝑡  moved from the 

position (𝑜) of their square cell structure to the radius of the fiber (𝑟𝑓𝑖𝑏𝑒𝑟) (Figure 3.6). 

𝑙𝑠ℎ𝑖𝑓𝑡 varies depending on the volume fraction and with a condition that the fiber center is 

placed in such a way that it does not intersect with neighboring fibers.  The movement is 
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also oriented in random angle.  The angle (𝜃) in which the fiber center moved, decided 

by a random factor of 2𝜋𝜗 where 𝜗 is the random number between 0 to 1. Below is an 

explanation of the randomization of a fiber from the square packed center o.  

 

 

 

           

Figure 3.6 : Random positioning of the fiber 

 

           

Figure 3.7 : Square packed to random position transformation for 0.45 volume fraction of fiber and  

with degree of randomness (a) 0 (b) 0.1 (c)0.25 

 Cluster of fibers- Meshes with clustering of the fiber towards the central axis were also 

generated. The degree of shift towards the central axis, vertical or horizontal, is defined 

by the ratio of the distance the fibers changed position (𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟) from the square packed 

to the radius of the fiber (Figure 3.8). The degree of shift is higher for the fiber near to 

the central axis compared to the one near the boundaries. The general algorithm is 

presented in equation 3.20-3.23 where 𝑁𝑓𝑖𝑏𝑒𝑟  is the number of fiber, 𝑓𝑠ℎ𝑖𝑓𝑡~(0 →

𝑁𝑓𝑖𝑏𝑒𝑟 − 1), 𝑐 is the coordinates with square packed. In the vertical direction, the change 

in position is governed by random factor in a way that it does not intersect with each other 

as shown in equation 3.23 where 𝑐𝑦 is the y coordinate of square packed, rand  ~(1 →

−1)  and s is the maximum possible shift in vertical direction without intersection of 

surrounding fiber.  

For fibers at central 

axis: 
𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 0  (3.20) 

For fibers on the left 

side of central axis: 
𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑓𝑠ℎ𝑖𝑓𝑡  𝑠𝑖𝑛 (𝜋𝑐/(2(𝑁𝑓𝑖𝑏𝑒𝑟 − 1)10

−5))  (3.21) 

For fibers on the right 

side of central axis: 
𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = −𝑓𝑠ℎ𝑖𝑓𝑡 𝑠𝑖𝑛 (𝜋𝑐/(2(𝑁𝑓𝑖𝑏𝑒𝑟 − 1)10

−5)) (3.22) 

Vertical shift in 

position: 
𝑦𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑐𝑦 + (𝑠 𝑟𝑎𝑛𝑑) (3.23) 

 

fiber 

 𝜃 
𝑜 

𝑙𝑠ℎ𝑖𝑓𝑡 
𝑜 

fiber 
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Figure 3.8 : Clustering on vertical position (0.2 volume fraction)  

4.2 Boundary conditions 

The homogenized REV represents a medium that has an overall thermal response 

representative of the macroscale and independent of the choice of boundary conditions (BC). 

However, in the case of CFRC, the locally heterogeneous thermal properties can lead to a strong 

thermal gradient or heat flux at the edges depending on the choice of BC. Therefore the question 

of a correct measurement of an effective thermal property of CFRC irrespective of the boundary 

condition is crucial. In the article by Jeulin [40], it was shown that if the length of the sample is 

greater than the diameter of the fiber, there are no fluctuations in the effective transversal thermal 

conductivity. However, at what exact factor the length should be increased, was not clearly 

discussed. Moreover, Kalamkarov et al. [30] and Hollister and Kikuchi [41] also show that the 

effect of boundary layers are more dominating when the REV is small. In his PhD dissertation, 

A. Matine [38] listed few methods present in the literature that deals with the boundary layer. 

However, he investigated that there is only one technique present that encounters the heat transfer 

study. This method remains very particular since it is based on an analytical solution obtained by 

the method of quadruples on a multilayered material. It cannot be generalized easily to different 

arrangement of fibers in a composite. Therefore he extended the models based on elasticity 

problem by H. Dumontet[42] and Arlequin[43] to deal with the edge effect in the context of 

periodic homogenization. Additionally, homogenization of the equation of transient heat 

conduction by the asymptotic expansion method was also done.  

From these literature results, the presence of boundary layers was evident in the modeling 

of heat transfer in composite. It is therefore essential to choose properly the REV dimensions in 

a unidirectional composite depending on the chosen boundary conditions for homogenization. 

One of the controlling parameter is length, and thus to know the exact length of the sample 

necessary for effective properties to be independent of the boundary condition at the scale of REV 

is crucial.   

In this preliminary study, the following boundary conditions were tested over various 3D 

meshes (section 4.1). It should be noted that for simplicity a 2D representation is selected for 

showing the boundary conditions.  

Central axis 
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 Dirichlet- Temperature is imposed over all boundaries 𝛹𝑖 with T=0 and T=1 on the two 

opposite faces of the sample depending on the desired effective conductivity estimation 

(Figure 3.9). Apart from the two faces, rest surfaces are imposed by a temperature 

gradient.  

   

Figure 3.9 : Dirichlet boundary condition (a) transversal (b) axial 

 Neumann- Flux (𝜑) is imposed over all boundaries 𝛹𝑖where the opposite faces are at flux 

value of 1 and rest of the surfaces are under adiabatic condition.  

 

 

 

 

 

 

 

 

 

Figure 3.10 : Neumann boundary condition (a) transversal (b) axial 

 Mixed- Similar to Figure 3.9, for mixed boundary condition, in this thesis the temperature 

is imposed on the surfaces where the desired gradient of temperature was required and 

the rest of the surfaces had adiabatic flux condition. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 : Mixed boundary condition (a) transversal (b) axial 

(a) (b) 

(b) (a) 

Adiabatic condition Adiabatic condition 

Adiabatic condition Adiabatic condition 

𝜑 = 1 𝜑 = 1 𝜑 = 1 
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5. Results on Square Packed CFRC 

5.1 Influence of Length on different Boundary conditions 

In this section, the influence of change in length over the effective thermal conductivity 

tensor is discussed for various volume fractions of fibers. Different boundary conditions were 

tested. A square cell with volume fraction ranging from 0.2 to 0.6 were tested. The thermal 

conductivity of the material is as shown in table 3.1.  

CFRC component[44] Thermal conductivity (W m -1K-1) 

Fiber 1.19 0 0
0 1.19 0
0 0 6.1

 

    Matrix 0.22 

Table 3.1: Material thermal conductivity 

The diameter (D) of the fiber is set to 6.5µm, a quite realistic value for carbon fibers, and 

the length (L) is varied in such a way that the aspect ratio (𝜎𝑟 =L/D) changes from 1 to 40 (Figure 

3.12). Figure 3.13 shows the variation of effective axial thermal (𝐾𝑎𝑥𝑖𝑎𝑙
∗ ) conductivity with change 

in aspect ratio for different volume fraction. Figure 3.14 shows the same for estimation of 

effective transversal thermal conductivity (𝐾𝑡𝑟𝑎𝑛𝑠
∗ ). Please note that due to the particular geometry 

of tested REVs, the main axis of the conductivity tensor were assumed to be the ones of the 

physical frame used. The periodic approach is not sensitive to the orientation, but the simple 

analysis performed with the other boundary conditions would be slightly more complicated in 

case of an out-of-axis problem. 

 

 

 

 

Figure 3.12 : Simple example of fiber in matrix 
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Figure 3.13: Variation of the effective axial thermal conductivity for different boundary conditions 

with change in the cell aspect ratio aR and for volume fractions of (a)0.2 (b)0.45 (c)0.6. 
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Figure 3.14 : Variation of the effective transversal thermal conductivity for different boundary 

conditions with change in the cell aspect ratio aR and for volume fractions of (a)0.2 (b)0.45 (c)0.6  

At the scale of REV, the effective properties should be independent of the length of the 

sample. However, it was observed that depending on the transversal or axial part of conductivity, 

there were certain boundary condition that were varying with the length. In particular for the 

estimation of axial thermal conductivity with the Neumann boundary condition and transversal 

thermal conductivity with the Dirichlet boundary condition are influenced by the length of the 

sample. However, it can be observed that after the aspect ratio of 20, the effective axial and radial 

thermal conductivity remain almost constant. Thus at this scale, there is no influence of boundary 

conditions on the estimation of thermal conductivity tensor. It can be seen that in case of 

transversal thermal conductivity, despite taking care of the length, the effective properties has 

(c) 

(a) (b) 

(c) 
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certain difference from the periodic approach. However mixed boundary condition is always 

giving constant effective properties and in good comparison with the periodic approach.  

Therefore, in general, the aspect ratio of 20 is sufficient for the current thermal contrast and this 

factor also remains the same irrespective to the change in volume fraction. Although for higher 

thermal contrast the edge effects would be more dominating thus the aspect ratio would 

significantly change.  

The variation in the values of effective thermal conductivity in particular boundary 

conditions is due to the boundary effects that are dominating the heat flow. If we consider the 

results for the axial thermal conductivity as it can be seen from Figure 3.15. The temperature 

gradient at the surface has a sudden change (edge effect) in case of Neumann boundary condition 

when the length is small. With higher length the change in temperature gradient is present but due 

to increase in length, its overall effect on the volume is not dominant. This is the reason for the 

variation of results with length in Neumann boundary condition as the edge effect is dominant in 

small length. On the other hand in case of Dirichlet boundary condition, this problem is not 

present as the temperature is already predefined. 

                                                

                               

 

Figure 3.15 :  Temperature gradient on the (a) cut plane along the fiber direction for axial 

thermal conductivity calculation with (b) small length (20µm). (c) Length 100µm (d) length 

200µm (e) gradient scaling 

Considering the case of transversal thermal conductivity, as shown in Figure 3.16 the 

variation in the result of the effective thermal conductivity in Dirichlet boundary condition is due 

to the positive and negative flux in the proximity of the fibers and matrix interface. This is 

expected to affect the temperature distribution in the middle. But if we take a longer length then 

this might not affect the temperature distribution in the core of the material. Therefore, 

considering good aspect ratio is crucial for estimation of effective thermal conductivity.  

(c) 

(d) (e) 

z x 

y 

(a) 

(b) 

Plane cut 
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Figure 3.16 : Flux on the surface in case of Dirichlet boundary condition at the plane cut 

5.2 Representative elementary volume of uniform square cell 

In the previous section, the influence of the cell length on the homogenized conductivity 

tensor when using various boundary conditions was analyzed and it gave a certain aspect ratio 

factor in order to make accurate effective thermal conductivity tensor estimation. Keeping this 

preliminary assumption in consideration for all the geometries, representative elementary volume 

was determined. However, a REV determination for shorter lengths was also carried out. Figure 

3.17 and 3.18 show the effective thermal conductivity tensor for different boundary conditions. 

Two lengths of meshes were considered depending on the aspect ratio of 5 and 30.  Volume 

fractions from 0.2 to 0.6 were analyzed. The REV is determined by the size at which the effective 

thermal conductivity is constant. The size of the sample is defined by sample window (∝) which 

is the square root of total number of fibers present (∝= √𝑛𝑓𝑖𝑏𝑒𝑟𝑠). The result of conductivity 

tensor at each ∝ is also compared with periodic boundary conditions. The periodic assumptions 

are very attractive since exact effective properties are computable for the most basic case.  

From Figure 3.17, it can be observed that in the case of axial thermal conductivity, the 

Dirichlet, Mixed and Periodic boundary condition is giving similar result irrespective to the length 

of the sample. The deviation in the axial thermal conductivity value for multiple lengths with the 

Dirichlet and Mixed boundary conditions and increasing ∝ are shown by the error bar in each 

plot. With Neumann boundary condition at higher length or aspect ratio showed convergence of 

the conductivity value with increasing ∝. However, with the Neumann boundary condition, the 

shorter length geometry couldn’t determine the REV. In case of transversal thermal conductivity 

(Figure 3.18), the determination of REV with Dirichlet has shown significant improvement with 

longer length mesh than a shorter one while rest boundary conditions gave a more or less similar 

value of effective transversal conductivity. These outcomes are constant for higher volume 

fraction also. Therefore, it can be concluded that the effective conductivity tensor depends not 

just on the size (width by height) of the microstructure considered, but also on its length and the 

boundary conditions.  

Plane cut 
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Figure 3.17 : Variation of the effective axial thermal conductivity at different boundary conditions 

with the number of fibers at different volume fraction (a) 0.2 (b) 0.45 (c) 0.6  
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Figure 3.18 : Variation of the effective transversal thermal conductivity at different boundary 

conditions with the number of fibers at different volume fraction (a) 0.2 (b) 0.45 (c) 0.6 

(a) (b) 

(c) 

(a) (b) 

(c) 



Chapter 3: Thermal modeling of fibrous composite for estimating effective thermal conductivity tensor 

81 

 

It can be realized that the edge effect serves as a prime factor in determining the effective 

thermal conductivity. It's important to note that the mixed boundary condition and periodic 

boundary condition don’t show such a problem and should be preferred in any homogenization 

process. Nevertheless, the applicability of periodic boundary condition on the complex geometry 

is sometimes more difficult. Therefore, choosing a mixed boundary condition for different studies 

can be seemed interesting, provided the microstructure lies exactly in the axes of the used frame. 

5.3 Influence of Volume fraction 

At the scale of REV, it is important to study the influence of volume fraction of the fiber 

on the estimated anisotropic thermal conductivity tensor. The theoretical models discussed in 

section 2.4 have good efficiency in predicting the effective conductivity of the REV. However, it 

should be noted that these models are extensively used only in the case of transversal thermal 

conductivity. Figure 3.19 shows the effective thermal conductivity estimated numerically for 

different fiber volume fractions using the unit cell approach. In the case of transversal thermal 

conductivity, the numerical results are within the range of Voigt-Reuss bounds along with the 

Maxwell and Rayleigh model. Although, the prediction of literature about Hashin-Shtrikmann 

bound providing tighter range holds true in the result but the effective thermal conductivity 

estimated numerically is not within the bound. This could be due to the thermal contrast limitation 

of this model. However, the effective transversal thermal conductivity predicted by numerical 

model is in good agreement with the Rayleigh and Maxwell model and is in the bound of Voigt 

Reuss.  In case of axial, the numerical results showed that the effective axial thermal conductivity 

is in proximity to the Voigt or mixing model, which is not surprising.  
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Figure 3.19 : Variation of the effective (a) transversal (b) axial thermal conductivity at different 

boundary conditions with the volume fraction of fiber (aspect ratio of 20). 
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6. Results on Random distributed fibers in CFRC 

6.1 Influence of Randomization and Clustering 

Prior to this section, the computations were only conducted for the uniform square packed 

fibrous composite contrary to the reality where the position is not so strongly uniform. Therefore, 

it’s essential to verify how the distribution of the fiber position, by randomization or clustering, 

can affect the effective property measurement. For simplification a position factor, 𝑝𝑓 =

𝑙𝑠ℎ𝑖𝑓𝑡
𝐷
⁄  is defined which is the ratio of the shift (𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑜𝑟 𝑙𝑠ℎ𝑖𝑓𝑡 depending on clustering and 

randomization) in the position of the fiber from the uniform square cell to the diameter of the 

fiber(𝐷). At each 𝑝𝑓 , multiple geometries (8 cases) were tested by choosing different random 

angular direction of movement (section 4.1). Figure 3.20(a), where calculations were performed 

for a fiber fraction of 0.45, shows that the axial effective thermal conductivity is independent of 

the change in position. This is due to the reason that in the axial direction, the fiber dominates the 

heat flow and no overall change in the heat current in case of axial conduction. However, in the 

case of effective transversal (Figure 3.20(b)) conductivity tensor, there is a small change (<5%) 

from the square packed cell for the estimation with an increase in the position factor of 

randomization and clustering (Figure 3.21). Though such an effect should be stronger for a higher 

contrast in the constituent properties, there is in practice no significant change in the result due to 

this randomization. This trend was also observed for different volume fraction. However in the 

current appraoch the limitations are fibers percolation cases could not be studied by the present 

approach because of meshing difficulties. More significant changes can be expected if a 

percolating path in the fibrous phase is reached, which can be the case at fiber fractions around 

60% volume fraction. 
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Figure 3.20 : Effect of randomization in the fiber position at different 𝒑𝒇 on (a) axial (b) transversal 

thermal conductvity for fiber volume fraction of 0.45.  
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Figure 3.21 : Effect of clustering of fiber on (a) axial (b)  transversal thermal conductivity 

6.2 REV and Homogenization in tapes 

A prepreg tape is a laminated pre-engineered material for the manufacturing of CFRC at 

macroscale. In advanced manufacturing processes such as AFP or ATP, the tapes are deposited 

one over another along different orientations to form a final laminate. The thermal properties of 

the constituents, which are AS4 fiber and PEEK matrix for these tapes (Table 3.1). Most of the 

research on the thermal behavior of tapes have the primary assumption of treating tapes as 

homogenous media (detailed discussion in Chapter 4). However, from the micrographs on these 

tapes (Figure 3.22), primarily shows that the homogeneity is yet questionable.  

     

Figure 3.22 : Microscopic image of (a) Solvay (b) Suprem tapes 

The huge difference in the distribution of fibers between the two commercial tapes, 

Solvay and Suprem, encourages to study the thermal REV of those microstructures, especially in 

transversal direction. A detailed description of the meshing from this microstructure is present in 

the upcoming chapter.  

In this section, the effective transversal thermal conductivity prediction of the tapes are 

shown. This was done by scanning the tapes through different sections and performing unit cell 

approach over each section using mixed boundary condition depending on the desired direction 

(section 3.3). The number of sections chosen for scanning are reduced, attaining larger volume of 

tapes under consideration thus slowly moving towards the representative volume of the 

macroscale. Figure 3.23 shows an example of the scanning performed over Suprem tape through 

different sections or windows along the width and along the height. For both Solvay and Suprem 

tapes, the width of the window increased from 45µm to 400 µm and scanned through the overall 

(a) 

(b) 

(a) (b) 
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volume. Along the height, the window is increased from 20µm to 160µm. This size depends on 

the width and height of the mesh generated from the micrograph.   

 

 

Figure 3.23 : Scanning of a Suprem tape along the (a) width (b) height 

Figure 3.24 (a) and (b) shows the effective transversal thermal conductivity of windows 

scanned through the Solvay tape along width and height respectively. Figure 3.25 shows the same 

for Suprem tape. In case of Solvay tape, the scattering of effective transversal thermal 

conductivity is large, 0.37 – 0.53 W m_1K_1 at smaller window to 0.43-0.46 W m_1K_1 for a 

window of width nearly equal to the width of the mesh. The mean (−) of all data at different width 

of scanning showed more or less stable effective thermal conductivity. For scanning along the 

height, it can be observed that the scattering was increased (0.25-0.52). This is due to the 

inhomogeneity in the distribution of the fibers and matrix and especially along the height there is 

layer of only matrix present in the micrograph (Figure 3.22 (a)). Even the mean of data at different 

height of scanning had the highest scattering as compared to other cases where the mean is more 

or less stable. In contrary to this, the Suprem has rather homogenous distribution of fibers in the 

matrix (Figure 3.22 (b)). Therefore, it can be seen in Figure 3.25 that the scattering of the effective 

thermal conductivity is far less than the Solvay tape and at bigger window, both along the width 

and height, it has shown a rather constant value of conductivity for different section. Therefore, 

in case of Suprem the homogeneity is attained conveniently for a bigger window and the effective 

thermal conductivity is 0.41 W m-1K-1. The mean (−) of effective thermal conductivity estimated 

at different width or height had a stable result. Therefore the choice of the window size is crucial, 

that is large window had high computational cost but low error or else small window with higher 

(a) 

(b) 

width 

height 
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uncertainty. Further Figure 3.26 shows the variation of effective conductivity at different y depth 

of Solvay tape. It could be seen that the maximum effective conductivity is indeed at a particular 

depth for scanning with smaller height of window such as 20 and 30µm. This could be due to the 

localization in fiber distribution at a certain depth (leading to high conductivity) contrary to the 

other depths where the presence of matrix is dominating. Yet a further analysis on the distribution 

of fiber density in the tapes and its correlation with the conductivity would be interesting to solve 

in the near future.  
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Figure 3.24 : Effective tranversal thermal conductivity for Solvay tape by scanning window along 

different (a) width (b) height 
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Figure 3.25 : Effective tranversal thermal conductivity for Suprem tape by scanning window along 

different (a) width (b) height 
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7. Partial Conclusion 

The complexity in the real microstructure led to the inapplicability of the direct theoretical 

models. This chapter aimed to estimate the effective thermal properties of a mesoscale structure 

starting from the one with square packed to the real microstructure of the tapes. The homogenized 

medium generally has effective properties that remain constant with the change in the applied 

boundary condition. However, it was found out that the choice of the boundary condition plays 

an important role in the determination of effective properties as at certain boundary condition, the 

edge effect is dominant making wrongful prediction of effective properties. Studies were made 

for different volume fraction and it was found out that after a certain length of the geometry for 

each microstructure, defined by the cell aspect ratio, the effective properties are not influenced 

by the boundary condition. The mixed boundary conditions showed results not influenced by the 

length of the geometry. The smaller length also influences the determination of REV for different 

volume fraction.  

Tests were also made on random distribution and there was no significant change in the 

conductivity tensor was observed as compared to square packed (<5%). Homogenization was also 

carried out on the Solvay and Suprem tapes used in the following chapter, with cells containing 

up to approximately 700 fibers. It was observed that the Suprem tapes are easily homogenizable 

due to the good distribution of the fibers in the matrix. However, the band or scattering of effective 

transversal conductivity in Solvay tapes were huge due to the irregularity in the fiber distribution. 

In the next chapter, a detailed description of the homogenizability of the tapes will be presented. 

And can be checked in that case that one needs almost the entire height of samples to get a stable 

(representative) answer. This of course includes all the possible edge effects and structure 

modifications in the vicinity of the upper and lower surfaces and is unfortunately the sign of a 

non homogenizable situation, where the microscale calculation is necessary. 
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1. Introduction 

The huge demand for composite materials in multiple industrial sectors such as automobile, 

aeronautics, construction and many more, as mentioned in chapter 1, led to the necessity of 

advanced manufacturing techniques. Traditional methods are time consuming as well as 

economically expensive due to the involvement of human labor. Additionally, the reduction of 

mechanical strength due to the inaccuracies such as voids and deformities during production is 

also problematic. In the past few decades, there are developments of specific processes, especially 

automated one, which would satisfy the need of high production of composite with better 

accuracy. Industrially, the widely accepted mechanized manufacturing techniques are Filament 

Winding (FW), Automated Tape layup (ATL) and Automated Fiber placement (AFP) [1]. FW 

has multiple filaments, winding over a rotating mandrel in a different orientation to produce 

circular or oval sectioned components. Regardless of the stagnant growth in the past, FW is being 

employed in multiple industries with the surge of automation software and machinery [2] . 

However, its use is limited to a particular shape unlike the ATL and AFP techniques, used for 

fabrication of large uniaxial work pieces and for production of complex shapes respectively[3]. 

The implementation concept remains however common to both techniques. It is based on the 

successive stacking in a mold layers of unidirectional carbon fibers thin (around 150µm) pre-

impregnated thermosetting matrix.  

Research on this technique (AFP) is widely focused on the macro scale behavior of the 

composite as discussed in section 2. This chapter focuses on overcoming certain limitations of 

the previous researches (section 2) that can be achieved by studying the thermal behavior of the 

tape during an AFP process at the microscale. In order to fulfill this objective, the in-house 

experimental bench used in the thesis of Violaine Le Louët is described in section 3. However, 

our motivation was to understand numerically what is happening at the scale of single tape 

(section 4.1). A three dimensional (3D) meshes are generated from optical microscopic images 

(section 4.2). In this work, we consider the case where the laser heating has a normal incidence 

with respect to the top surface of the tape. Similar to a ray tracing technique, the zones of the 

fibers impacted by the laser rays are first detected (section 4). It should be noted that the current 

study does not consider reflection from the fiber surface. Fibers are considered to be an absorbing 

medium and the matrix was assumed to be transparent[4]. The heat source distribution for 

different tapes while heating with the laser are discussed in details in section 5.  

The rear side of the tape accounts for the roughness of the imperfect contact with the steel 

bench. The transient heat transfer equation is solved by FEM (section 6) over the tape volume for 

a total time period of 200 ms out of which the tape was heated by a laser beam for 25 ms. Multiple 

numerical results such as average temperature along the depth of the tape, the influence of RTC 

on the average temperature estimation, along with a comparison of the average surface 

temperature observed during experiments and numerical model is shown in section 7.  
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2. Literature Review on AFP 

2.1 Typical AFP process:  

A typical AFP process involves the use of a motorized placement head to place the 

composite prepreg tapes layer by layer to build up a final laminate after passing through heating, 

consolidation and cooling phase (Figure 4.1). The bonding of the surfaces involves intimate 

contact, realized by pressure application (roller), during heating by a given source. Previously, 

hot gas torch was used as a heat source due to their low cost but the processing costs were higher 

as it needed a nitrogen environment for preventing oxidation. Furthermore the overall heating was 

limited because of this convective mode of heating. Therefore, recently laser diode with higher 

energy density and instantaneous response with better process control, have come to the use 

[7][8]. The heating phase should be long enough to ensure the melting temperature is reached. 

Furthermore, the overheating of the sample should be avoided as it might cause a degradation in 

the tape because of chain scission primarily in the carbonyl linkage leading to crosslinking 

reactions[6].  

Subsequently with heating, there is pressing by a roller in the consolidation phase and later 

releasing the laminate to cool under atmospheric condition. The roller can be a simple cylindrical 

shape or conformable rollers that assist in placement on a curved surface [9]. The strength of the 

laminate is high when the bonding between the substrate and tape becomes strong. This is possible 

due to the decrease in the polymer viscosity during heating and increases the chances of better 

contact at the interface, also known as intimate contact. This highly depends on the surface 

constraints, and the applied temperature and pressure [10]. Moreover, the intermolecular diffusion 

of the interface with intimate contact between the substrate and the tape due to autohesion 

increases the overall strength of the laminate[11]. Thus the phenomena of heating, pressing and 

autohesion are highly correlated.  

 

 

Figure 4.1: Schematic diagram of AFP process[8] 
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The different benefits of the AFP manufacturing technique make it stand out among other 

manufacturing techniques. These are[5][6]:  

  Complex structure manufacturing 

  Accurate fiber placement and quality improvements 

  Quality improvements 

  Labor-saving 

  Low mold production time 

Regardless of these benefits, the automation manufacturing techniques can suffer from 

energy inefficiency, economic incompetence and time-consuming depending on the choice of 

thermoset as the matrix.  

2.2 Thermoplastic over thermoset matrix:  

At the consolidation phase of AFP, the matrix of the prepreg and the substrate bond together 

by crosslinking at the interface. The thermoset matrix goes through an irreversible polymerization 

during the bonding. The substrate becomes much stiffer than its upcoming tape, making the 

bonding and passing to the mold rather difficult. The difficulty also arises if the matrix is semi-

crystalline as it necessitates the use of higher processing temperature and the final product quality 

is highly susceptible to the thermal environment [12].  

The thermoset matrix is generally cured in an autoclave under a controlled environment of 

temperature and pressure to remove the voids and guarantee a higher product quality. However, 

this operation is quite expensive and is currently motivating researches to transform it to out-of-

Autoclave (OoA) state [13–15]. Besides the choice of OoA, a great industrial interest is present 

in changing the matrix to a thermoplastic material. The advantages of thermoplastic materials 

over the thermosets are[6][16–18]:  

 Short cycle time as no curing and refrigeration are required.  

 Recyclability makes it near infinite shelf life. 

 Extreme toughness and higher fracture resistance.  

 Stable Tg (glass transition temperature).  

 Low level of moisture uptake.  

 Higher chemical stability.  

 Higher resistance to impacts 

Table 4.1 shows a comparison of a few properties between thermoplastic and thermoset 

matrices.  
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Type Matrix 

 

Ultimate 

tensile stress 

(MPa) 

Module of 

Traction 

(MPa) 

Density Glass 

transition 

temperature 

Fusion 

temperature 

Thermoset Epoxy 80 3600 1.3 180 N/A 

 

Thermoplastic 

PPS 65 3800 1.35 90 283 

PEEK 100 3600 1.3 143 343 

PEKK 110 4400 1.27 162 305-360 

Table 4.1: Comparison of properties between thermoset and thermoplastic materials [19] 

The lack of autoclave in the thermoplastic composite always leads to an increase in void 

growth that ultimately leads to defects such as porosities and lowers final quality of the product. 

Currently, the parts made by placing thermoplastic strips always require a post-consolidation 

autoclave. In the thesis of Kok [17], various models that define the growth of the voids were 

studied. He consolidated the prepreg tape in-situ that is during placement, eliminating the 

expensive post consolidation step. Currently, thermoplastic is being used in various parts in an 

airplane such as hoses[20], welded ribs, stamp formed clips[17] and many more.  Yet its 

acceptance to replace the thermoset composite in large sized components is rather slow[6][17]. 

This can be possible by better understanding each phenomenon involved during the 

manufacturing of thermoplastic composite by the AFP process.  

2.3 Temperature driven AFP process:  

The general objective of the AFP process is to have a final product with void content near 

to zero with strong inter-laminar bonding. In reality, it is difficult to fulfill due to multiple 

phenomena such as porosity rate, residual stresses, degradation happening at the scale of not only 

the substrate but also the prepreg. Thus the overall AFP process is controlled at multi-scale. These 

parameters are influenced by the type of raw material used, the removal speed, pressure or 

temperature fields as discussed in the thesis of V. Le Louët [19].  

Mechanisms involved: The characteristics of the matrix and fibers used are decisive for the 

properties of the final piece. The mechanical strength of the final laminate highly depends on the 

following factors as discussed in her thesis:  

Steps Heating Consolidation Cooling 

 Fusion Contact development Complete 

Crystallization 

 Degradation Healing Residual Stresses 

 Start of void growth Void compression  

  Beginning of 

Crystallization 

 

Table 4.2: An overview of mechanism during each step of AFP 

Processing parameters: The rate of deposition should be controlled as faster deposition 

could lead to weak bonding during the consolidation step and finally a product with low 

mechanical strength. The pressure applied to the laminate during consolidation should also be 

monitored carefully as insufficient pressure increase the growth of void and excess pressure can 
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cause damage to the fibers. Pressure above 0.4 MPa [21] and below 20 MPa[22] is suitable for 

proper quality of the final product.  

The temperature control of the AFP process not only defines its thermal but also the 

mechanical behavior of the final laminate. Beyond a sufficient heat input, it is the entire thermal 

history of the material that must be known and controlled to meet the specifications of 

manufacture of a laminate. Each step present in the AFP process starting from heating; 

consolidation parameters such as void growth, intimate contact development, healing, and 

crystallization are temperature dependent factors. Therefore, in this thesis we focus on the 

numerical thermal analysis of the tape in an AFP process.  

2.4 Literature on thermal modeling of the AFP process:  

Experimenting at very fine scales comes with the sensitivity issues of the measuring 

instrument and requires specific experimental setups. Therefore, in this thesis, a numerical 

approach is chosen that would have the capability to understand the intrinsic behavior of the tapes 

during AFP process. There are numerous studies present in the literature that are dedicated to the 

macroscale thermal study of an AFP process. In the year 1992, Mantell and Springer [23] created 

a 2D thermochemical model for consolidation, residual stress and bonding during an AFP process. 

The actual temperature distribution on the top of the ply was not discussed. The heat capacity and 

thermal conductivity were kept constant before the glass transition temperature. Later in the year 

1998, Sarrazin and Springer [24], by assuming uniform heating of the composite, focused their 

work on the thermochemical and mechanical modeling of the ATL. They also assumed that the 

specific heat capacity and the thermal conductivity are linearly dependent on temperature. 

Similarly, most of the research works are based on the strong assumption of uniform heating at 

the interface with complete absorption of energy where the tapes are acting as a homogenous 

medium and the maximum temperature is at the top surface [25–29].  

Various studies were also conducted on the estimation of the exact energy absorbed by the 

tape after accounting reflectance from the surface of the fibers. Grove estimated the heat 

distribution input by accounting the reflectance of the laser heat source at the tape surface. He 

estimated the surface flux distribution with a 2D ray-tracing pattern on a merely specular surface. 

In the year 2015, Stokes-Griffin and Compston published two articles. In the first one [30], the 

effect of reflectance by changing the angle of laser impact on the surface was estimated using an 

optical ray-tracing model (less than 15% reflective energy until 55° of the angle of incidence of 

laser). In the second paper [11], a 3D ray-tracing model was developed that captured the 

anisotropic scattering during the AFP process. They assume the tapes are acting as an equivalent 

homogeneous surface sized to reproduce the optical behavior of the beam over the composite. 

The thermal model takes into care the change of thermal properties with temperature. However, 

there was a strong assumption of perfect contact between the coming prepreg and the substrate 

that could affect the overall temperature distribution. Barasinski[10] introduced multiple 

configurations to deal with the thermal contact resistance between the layers due to imperfect 
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bonding. However, no comparison with the experimental measurements was shown. In the year 

2018, Kollmannsberger et al. [31] developed a 2D model to take into consideration all the global 

parameters such as non-uniform heat input by laser, a thermodynamic model including 

temperature-dependent material properties, and thermal contact resistance between the layers.  

However, what is happening at the scale of single tape was never discussed by any of the 

research articles. Mostly the surface is assumed to be uniformly heated and the tapes are acting 

as a homogenous medium. Nevertheless, at the micro-scale, experimentally there is a huge 

difficulty in predicting the real thermal behavior inside the tape. Direct temperature measurement 

during the AFP process is often difficult due to the lack of confidence regarding the intrusiveness 

of the sensor between thin composite tapes (~500µm). In the thesis of Le Louët [19], the research 

group developed a specific bench aiming to experimentally determine what a prepreg tape did 

undergo during a deposition in terms of temperature. It was observed that with the classical model 

assuming tape as a homogenous medium, there was a bad prediction of the maximum temperature 

reached by the surface, as measured with an infrared camera. AFP being highly dependent on the 

thermal history of the tapes or prepreg, the exact prediction of the temperature during the process 

is widely essential or else the quality of the final product can get hampered. Moreover, in the 

literature, there seems to be no work present that focuses on the real microstructure.  

3. Experimental Setup 

In the thesis of V.  Le Louët [19], an experimental bench was designed to reproduce and 

characterize the thermal exchanges happening at the scale of one ply to another during the AFP 

process. The realistic representation of the thermal history not only depends on the heating of the 

top surface but also on the cooling by the steel bench present at the rear end. The thermal contact 

resistance between the tape and the substrate highly affects the cooling rate. Thus the objective 

of her thesis was to observe the various parameters influencing the heating of a composite heated 

by a laser diode, such as surface temperature rise, flow transmitted to the fold and the tape/tool 

interface behavior.  

 

 

 

 

 

 

Figure 4.2: Schematic diagram of the experimental setup 



Chapter 4: Thermal behavior of tapes in automated tape placement at the scale of fibers 

98 

 

Figure 4.2 represents the schematic diagram of the experimental bench. A tape is held on 

metal support and heated by a laser diode placed at an angle 𝜃. The radiative properties of the 

tape and the microstructural arrangement of the carbon fibers, decides the surface temperature 

distribution and the flux that is absorbed. The heat is then passed through the depth of the tape by 

conduction and then cooled by the contact rear side zones of the tape with the steel bench. 

Different aspects of the experimental setup are described in the following: 

Tape: The materials selected for this study were composed of pre-impregnated 

unidirectional carbon fibers surrounded by a PEEK (Poly Ether Ether Ketone) polymer matrix. 

Two types of composite by a different supplier, APC2 Solvay and SupremTM, were tested with 

the experimental bench. A detailed description of the material properties are given in the 

upcoming sections. 

Steel Bench: With the objective of a 1D heat flow in the thickness, two identical stainless 

steel benches of type Z35CD17 (AFNOR) with dimensions 20mm by 6mm were used on the rear 

side of the tape.  

Thermocouples: Multiple thermocouples of type K with diameter 25 µm are placed in the 

drilled channels on the steel bench near to the tape interface. The end of thermocouple sheath is 

welded to the metal frame. Two additional coaxial thermocouples were welded at 1.25 mm and 

3.25 mm in the center, in order to realize a flux sensor. Three 1mm diameter control 

thermocouples were placed to measure the bottom and side face temperatures of the steel.  

Laser Diode: The laser is driven in power and time by an analog signal between 0 and 10 

V to provide a set point between 0 and 100% of the maximum power of the laser equal to 2 kW. 

The minimum power is set to 10% of the maximum value. A complete characterization of the 

laser heat source was done in the thesis of Le Louet. The principle of the diode lasers rests on the 

combination of many individual beams of low density. The integrated laser beam projected on 

the surface consists of uniformly distributed wavelengths between 900 and 1100 nm. It was 

estimated that a total heat flux of 1.8 MW.m-2 was projected by the laser to the tape [19] at the 

minimum power of the laser.  

Thermal Camera: A FLIR SC700 thermal camera is held perpendicular to the tape with 

a metal bracket whose position could be adjusted. The temperature is measured by the thermal 

camera using the emitted radiation (1.5 to 5.1 µm wavelength) which is ultimately related to the 

temperature of the surface depending on the emissivity of the surface. The emissivity of the 

material in this wavelength range was measured to be around 0.9. The use of the thermal camera 

makes it possible to obtain a record of the evolution of the surface temperature rendered in an 

image. The measurement of temperature was performed by the software Altair. The measurement 

is made with a lens of 50 mm. The maximum image size is 320 by 240 pixels. The distance 

between the camera lens and the frame is 51 cm. 
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3.1 Measurement of Average Top Surface Temperature 

Heating tests were carried out on tapes produced by Solvay and Suprem. It was envisaged 

that the very fast temperature rises at the surface during heating of 25 ms were likely to produce 

strong thermal gradients in the thickness of the fold that would lead to thermomechanical 

deformations. Figure 4.3 represents the temperature over time of different points of the 

illuminated area averaged on a square zone of dimensions 5 x 5 mm2. Figure 4.3 shows the 

average temperature measured experimentally for Solvay and Suprem. It appears that at each point 

the change of slope during cooling takes place at different times, ultimately a different cooling 

rate for Solvay. Moreover, the maximum temperature reached during heating is also different. 

Supreme tapes had approximately homogenous behavior in terms of temperature distribution for 

different points.  

 

Figure 4.3: Evolution of top surface temperature with time at different points (1,2,3) in a 

tape (a)Solvay (b) Suprem 

 

 

 

 

 

(a) 

(b) (b) 
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4. Micro-scale numerical modelling on the tapes 

4.1 Motivations  

During the experiments, heating tests were reproduced for multiple samples and it was 

observed that the thermal response are different for two materials under the same heating 

condition despite identical chemical and optical properties. The study of surface temperature 

profiles highlighted the divergence between the homogeneous surface model and measurements 

by an infrared camera, during heating and the first instants of the cooling phase. The origin of this 

difference prompts to investigate the mechanisms of absorption of the laser flux on the surface 

and the microstructure of the folds. In our initial hypothesis, the major difference between the two 

types of tapes lies in the arrangement of the fibers and the rear side contact quality with the steel 

bench. Because of the surface roughness and depending on the number of effective points of 

contact, the heat flow takes preferential paths outside the one-dimensional axis, which is 

dominated by the boundary shape and by fiber distribution. Thus, the flow lines will converge on 

fiber-rich contact areas (Figure 4.4).  

 

Figure 4.4: Schematic representation of flux transmission along the contact of tape and 

bench 

Therefore in this thesis, the motivation is to study the thermal behavior of the tape, Suprem 

and Solvay, at microscale during AFP process by numerical modeling in order to check the 

validity of some physical assumptions about the micro-mechanisms of the heat transfer inside 

tapes. It would give us the ability to predict the physics happening at the scale of a single tape. 

The infrared camera could observe the top surface temperature of the tape but understanding the 

phenomena happening inside the tape is rather difficult, especially regarding the influence of the 

non-perfect contact between the tape and the steel. Geometries in resemblance with the real 

micrograph of the tape could help the study of influence of the contacts on overall temperature 

distribution. Analyzing different microstructure and observing how the arrangement of fiber 

distribution could affect the overall temperature distribution along the thickness. In the literature, 

little to no attention was given to the question about the appropriateness of homogenous heat 

transfer models along the thickness of the tape. This could be answered by solving the transient 

heat transfer of the tape during the AFP process at the microscale.   
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4.2 Image Processing 

Preliminary objective was to form a mesh for the finite element analysis with a maximum 

resemblance with the real microstructure. This could be approached by taking a microscopic 

images of the different section of tapes for proceeding image analysis for generating mesh. The 

two tapes were cut into small pieces along the perpendicular direction to the fiber. This was fixed 

in vertical position with the help of adhesive in a small container and then the liquid resin was 

poured in the container until the top surface of the tapes are covered in the resin (Figure 4.5 (a)). 

After the resin was dried, the support was removed from the container and then polished with 

different grade of sand paper starting from a particle size of 120 and then slowly going until 1200 

in order to get the clear sample for taking images under microscope (Figure 4.5 (b)).  

                 

Figure 4.5: (a) Preparation of the sample (b) Sample of Solvay and Supreme for optical 

microscope visualization 

4.2.1 Microstructures of Solvay and Suprem tapes 

Different micrographs (Figure 4.6, 4.7) were obtained by scanning the tapes with the help 

of an Optical Microscope (OLYMPUS BX61) at 20X zoom. It can be observed from the 

microstructures that for Solvay the arrangements of fibers are highly inhomogeneous. The fibers 

were packed in a way that leaves areas rich in the matrix with no fiber in the thickness. Porosities 

can also be observed in some places but they won’t be considered here for modeling. Contrary to 

the Solvay, Suprem tapes are rather homogenous in the distribution of the fibers in the matrix. 

Clearly, the two types of plies have very different microstructural arrangements for an identical 

AS4 carbon fiber content.  

 (c) 

Adhesive 

Acrylic resin 

Supporting 

container 

Tapes 

(a) (b) 
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Figure 4.6: Microstructure of different sections of the Solvay tape (a) Solvay 1 (b) Solvay 2 (c) 

Solvay 3 

 

 

 

Figure 4.7: Microstructure of different sections of the Suprem tape (a) Suprem 1 (b) Suprem 2 

4.2.2 Geometrical modeling with Hough Transform 

The geometries were generated from the microstructures by initially getting the information 

about the center of each fiber. A Matlab code transforms the micrograph into binary images and 

with the help of Hough transform, it segments the circles from the outside plane. In 1962, Paul 

Hough [32] developed this algorithm to detect geometric features like straight lines in digital 

images that is widely used in the sector of computer visions. Later it was used to spot higher order 

analytical shapes such as circle or ellipse [33][34][32]. In the thesis of M. Thomas[35], the 

Hough’s transform portrayed higher efficiency of detection in comparison to different 

morphological tools. The Hough transform can be a powerful tool. Specifying the radii range of 

fibers, it is then possible to detect the individual fibers on a grayscale or binary image. One can 

find on freeware Matlab routines present in the central file exchange website that uses Hough 

transform to detect circular shapes in a grayscale image. 

 

 

    

Figure 4.8: Hough’s algorithm over coins 

Figure 4.8 shows the example of Hough’s transformation over bunch of coins and detecting 

the edges of the coins.  These images had a quite defined edges therefore exact detection was 

possible. In the microstructure of the tape, there were multiple regions with dust or improper 

matrix impregnation that results in loss in detection of certain fiber as shown in Figure 4.9. 

However, this algorithm can detect the fibers that are not exactly circular and even in the area 

with blurry images and has shown low sensitivity to noise as compared to other detection 

techniques [35]. Therefore Hough’s transformation was used for the fiber center detection of the 

microstructures. It ultimately gave the pixel position for the center of the fibers that are present 

in the tape. The algorithm for circle detection is detailed in the Appendix.  

(a) (b) 
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Figure 4.9: Hough’s algorithm over a small section of the tape. 

After the pixels have been stored, the data is converted to the Cartesian coordinate system. 

For a 20x zoom, a multiplication factor of 0.1693e-6 to x and y positions gives us the x and y 

coordinates for the fiber center. For the detection of the edges of the microstructure ImageJ is 

used and the coordinates of the boundaries are also stored. Then a Matlab code was generated 

which can create the .geo file for Gmsh from the coordinates of the fibers and the boundaries. In 

that code one function was added that could generate the region of air and steel on the rear side 

of the tape. The region of contact depends on the boundaries of each tape. A detailed algorithm is 

presented in the Appendix.     

4.2.3 Meshing for FEM model 

Initially, geometries and meshes are created by the FEM meshing tool Gmsh with Frontal 

2D and 3D algorithm. In our case, the Solvay and Suprem mesh consists of surface element as 3 

node triangle and volume element as 4 node tetrahedron. This mesh is later used for detection of 

the elements of the fibers surface that are getting impacted by the laser. It is based on a simple 

optical model that finds the elements in direct exposure to the perpendicular hitting laser, each of 

these elements being given a different physical tag or region name. The tagged elements later can 

act as a heat source (𝑄𝐿𝑎𝑠𝑒𝑟) for the 25ms of heating in the solver of FreeFem++. The algorithm 

for element detection is presented in the Appendix.  

 

 

 

 

 

Figure 4.10: (a) Microstructure of Solvay 1 (b) Corresponding mesh 

(a) (b) 
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5. Heat source distribution 

Once the meshing is done, the first point of interest is exact region of absorption of heat 

over the scattered fiber in the tape. The heat source distribution along the height of the 

microstructures are determined by knowing the frequency or number of elements that are getting 

impacted by the laser at a particular height (y) of the tape. This can help in understanding the heat 

transfer inside the volume of the microstructure. Figure 4.11(a) shows the frequency distribution 

of Solvay 1. It was observed that due to the presence of certain thickness of PEEK matrix alone 

at the top and disparity of the fibers along the volume directed to maximum absorption of heat at 

a certain depth below the surface. This frequency distribution was fitted by the Matlab fitting tool 

in order to get a function that can perfectly describe the laser absorption zone. Apparently, the 

fitting with a beta function better defines the heat source distribution. This beta function is defined 

by the following integral term:  

𝛽(𝑥, 𝑦) =  ∫ 𝑡𝛽𝑥−1(1 − 𝑡)𝛽𝑦−1
1

0

 
(4.1) 

     where 𝛽𝑥 and 𝛽𝑦 can be real number that defines the shape of this continuous function. 

Similarly, different microstructures for Solvay were tested and is shown in Figure 4.11(b). It was 

observed that the heat source distribution could change significantly depending on the distribution 

of the fibers with maximum heat absorption around 25-50µm inside the tape. This makes the 

assumption of the tape as homogenous media quite questionable as that would lead to maximum 

absorption of laser heat on the top surface. Figure 4.11(c) shows the distribution for a Suprem 

tape and it can be seen that the maximum heat absorption is near to the edge of the top surface 

(~8µm inside). Even from our initial observation of the microstructure, it was observed that the 

Suprem tape has a rather homogenous and dense distribution of fibers throughout the 

microstructure. Thus making a similar heat source distribution for a different section of the tape. 

In order to better understand the thermal behavior of a tape at micro scale, a temperature 

distribution study along the depth would be necessary and thus a detailed solving of the heat 

transfer equation.  
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Figure 4.11: Heat source distribution for different microstructures: (a) Solvay 1, frequency 

of absorption and fitting with beta function, (b) Different Solvay microstructure, (c) Suprem, (d) 

values of 𝛽𝑥 and 𝛽𝑦 for different beta function fitting 

6. Numerical model 

As discussed previously, this thesis aims in solving the transient heat transfer problem of 

projected laser on the single tape. Mesh corresponding to the microscopic images of the tape was 

generated (section 5.3). The fiber surfaces impacted by the laser acts as a heating source and the 

distribution of this source was an important criterion to determine the behavior of the tapes during 

heating. The temperature distribution of the tape was calculated by solving the transient problem 

through FEM and average temperature at a particular height was calculated by an averaging 

scheme described in section (section 6.2).  

Figure 4.12 shows a schematic diagram for the basic idea of the model for tapes with direct 

laser heating, resistance due to imperfect contact by imposing presence of air and cooling by the 

steel bench on the rear side.  

 

 

 

 

 

 

 

Figure 4.12: Schematic representation of heating of tape 

Sample 𝛽𝑥 𝛽𝑦 

Solvay 1 235 9 105 

Solvay 2 269 1.4 106 

Solvay 3 757 2.3 106 

Suprem 1 295 9.8 105 

Suprem 2 340 9.9 105 

(d) 

B 

H=1.7mm 

e=150-200µm 

A A 
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Air 

Tapes 
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The laser beam at 𝜃 = 0 is assumed to be coming perpendicular to the surface with a 

uniform flux of 1.8MW.m-2 (𝑄𝐿𝑎𝑠𝑒𝑟) [19]. The matrix is transparent to the laser wavelength and 

fibers are assumed to have a uniform absorption coefficient of 90% of the laser heating. This 

approach does not account for the reflectivity from the fiber surface with the incidence angle nor 

the internal reflections between fibers. The air gap and non-smooth surface between the tape and 

steel act as the thermal contact resistance by giving added roughness. No additional contact 

resistance is added at the level of contact between the polymer and the steel. Consider a composite 

ply of thickness e kept in contact with the surface of the steel frame of height H. The transient 

heat transfer equation (4.2) is solved for temperature 𝑇 using finite element method with the 

boundary conditions given in (4.3). 𝜌𝐶𝑝 is the volumetric heat capacity, and 𝑘 is the thermal 

conductivity.  

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− 𝛁. (𝑘𝛁𝑇) = 𝑄𝐿𝑎𝑠𝑒𝑟       

{

𝑇𝑜𝑝 𝑠𝑢𝑟𝑓𝑎𝑐𝑒: 𝐴′ ′, −𝑘𝛁𝑇 = 𝟎

𝐿𝑜𝑤𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝐵′ ′: 𝑇 = 293𝐾

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑇(𝒙, 0) = 293𝐾

 

  (4.2) 

 

   (4.3) 

FreeFem++ is used to solve this PDE. This equation is transformed into its weak form, 

assembled and then solved by the standard generalized minimum residual iterative method.    

6.1 Material Properties 

The tapes are composed of pre-impregnated unidirectional carbon fibers AS4, surrounded 

by a polymer matrix PEEK (Poly Ether Ether Ketone). Although there is uncertainty in the 

diameter of AS4 carbon fibers along the length, as shown in chapter 1, for simplicity a constant 

diameter of 6.5µm is chosen for the numerical simulation. For the microstructural analysis, it is 

important to consider the thermal anisotropic nature of the fiber. The value of the thermal 

conductivity of each component was obtained from the literature. In the article of Kollmansberger 

[31], the measured heat capacity of the carbon fiber are rather constant for temperature up to 470 

K.  

0 50 100 150 200 250

600

800

1000

1200

1400

1600

1800

C
P
 (

J 
k

g
-1
K

-1
)

Temperature (
o
C)

 Matrix

 Fiber

 

Figure 4.13: Variation of specific heat of the matrix and fiber with temperature. 
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The heat capacity of the matrix was measured with the help of Differential Scanning 

Calorimetry in the thesis of Le Louët. A cycle at a heating speed of 5K/min was chosen for the 

measurement of heat capacity as a function of temperature. Figure 4.13 shows the linear 

interpolation of the heat capacity of the PEEK 150G matrix measured by DSC.  Table 4.3 shows 

the material properties such as thermal conductivity, heat capacity and density of the fibers and 

matrix along with the air present at the interface and the stainless steel bench of type AFNOR 

Z35CD17. The data of each component are obtained either from literature or data sheets of the 

provider. 

Thermal 

Properties 

Fiber (AS4) Matrix (PEEK) [19] Air[36] Steel 

[19] 

𝑘(W m-1K-1) 6.1 Longitudinal [19] 

1.19 Transversal 

0.22  0.028 23.5 

𝐶𝑝(J kg-1K-1)  1100  [31] 683+3.75*T (T<143oC)  

593+4.49*T (T>143oC)  

1006 480 

𝜌(kg m-3) 1790  [37] 1320 1.1 7700 

Table 4.3: Thermal properties implemented in numerical model for fiber, matrix, air and steel  

6.2 Averaging technique for temperature measurement by numerical model 

One of the issues of the numerical study is to calculate averages (temperature, heat flux) at 

one surface or at a particular height y of the sample. Just like the homogenization approach 

discussed in chapter 4, the idea is here to analyze in a simple manner the averaged 1D behavior 

in the transverse direction of tapes. Doing so, one expects to be able to study the homogenized 

continuous thermal behavior of the tapes in the process conditions and to give the way towards a 

continuous modeling, probably including the microstructural effects remarked previously. 

Surface-averages calculation is possible by the open-source visualization tool Paraview. 

However, its applicability is limited to the surface at a particular height or by manually changing 

the coordinate y. Such an approach would be unreasonably time consuming. The storage of 

temperature files as vtk files (~145mb) for each time step is also challenging in terms of memory. 

Fortunately, the FreeFem++ tool itself provides a quite efficient solution for this problem, making 

use of a grid technique for the averaging. Figure 4.14 shows an example of a circular cross-section 

and how the data at each grid point in the circular cross-section could be collected. The mean of 

all the data of n number of nodes present inside the circle gives the average temperature at the 

surface.  

𝑇𝑎𝑣𝑔 = (∑ 𝑇𝑖

𝑛

𝑖=1

) /𝑛 (4.4) 
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Figure 4.14: Circular cross section with grids. 

As visible from Eq.4.4, this approach is not a proper average in the sense of the finite 

elements method, but we take advantage here of the regularity in the grid where temperatures are 

simply interpolated by the FreeFem++ basic functions depending on the solution of the 

temperature. A comparison of the average temperature estimation from Paraview and direct grid 

technique was done on a 3D cube (1m X 1m X 1m) (Figure 4.15(a)). It can be seen from the 

Figure 4.15(b) that the average temperature measured at different y by our grid technique is highly 

consistent with the Paraview results with a condition of sufficient density of grids. However, it’s 

also essential to make sure that the grid density is high enough for the average temperature to 

remain independent of it. This was verified by applying FEM model over a Solvay mesh and then 

using grid technique to estimate the average temperature along the depth. Different grid density 

starting from 20 X 20 to 250 X 250 nodes were analyzed. It can be seen that beyond 100 X 100, 

the average temperature does not change further by increasing the grid density. It is also in 

excellent comparison with the results from Paraview (Figure 4.15(c)). This finally validates the 

use of the so-called grid technique for the rest of the results discussed thereafter. 
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Figure 4.15: (a) Cubical geometry (b) Average temperature by Paraview and Grid technique 

(c) Average temperature on Solvay1 by Grid technique 
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6.2 Mesh and Time Convergence 

The finite element method is chosen in order to solve the various problems posed. The 

searched fields are thus discretized spatially. It is the same for the time scale. Before exploiting 

the global model, it is necessary to check the convergence of these two discretizations. 

Convergence in mesh is verified by performing simulations using different meshes, from coarser 

to finer. In this case, the size of the element edge was the controlling parameter as it varied from 

0.5µm (higher mesh density) to 3µm (lower mesh density) for different meshes (Figure 4.16). The 

average temperature along the depth was estimated for different mesh size by solving the 

numerical model for heat transfer problem over the tapes in AFP. It was concluded that the 

element edge size of 1µm is sufficient to obtain an average temperature that doesn’t change with 

further densifying the mesh with smaller elements. On the contrary, further decreasing the element 

size would lead to increase in the computational cost of overall simulation.   In view of these 

results we will take, for the rest of the calculations, the discretization of the mesh with 1µm of 

element edge size. 

For the convergence of time, we performed several simulations on the mesh (1µm element 

size) with multiple time steps (0.5 – 6.25 ms) for solving the average temperature after 25ms of 

heating. From these results, it is observed that the time step has marginal influence on the results 

and 1ms of time step is sufficient to limit the error in average temperature estimation. 
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Figure 4.16: (a) Time convergence (b) Mesh convergence by estimation of Average 

temperature at 25ms 
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7. Results by numerical modeling 

In this section, our FreeFem++ code was used to solve the transient heat equation (section 

6) for different meshes (section 4.2) in resemblance to the microstructures presented above. The 

visualization of heat flow diagram at different time steps is presented along with the heat flux 

streamlines to understand how intimate contact can influence the overall heat flow in the tape. 

The influence of the RTC on the average temperature estimation is also shown. The calculated 

average temperature is compared with the experimental results.  

7.1 Heat flow by µ-calculation 

Figure 4.17 represents the temperature distribution in Solvay tape at different time steps 

that could help in the visualization of what is happening at the micro scale. During initial heating 

by laser, the fibers that are facing the laser are getting heated until 25 ms and then the natural 

cooling begins. The fiber distribution in the microstructure is the controlling parameter as the 

fibers have nearly 10 times the thermal conductivity of the matrix. Figure 4.17(a) shows the 

impact of the laser at the beginning of the heating phase (0.5ms). Later the heat is diffusing 

throughout the tape depending on the fiber distribution as it can be seen from Figure 4.17(c) that 

right side has a higher temperature due to denser fiber fraction. Figure 4.17(d) shows the cooling 

at 50ms due to the steel bench present at the rear side. Figure 4.18 shows the streamlines of heat 

flux in y direction (along the depth) showing the dominating direction of the heat flow at different 

time steps. The stream lines were generated using stream tracer function present in Paraview. As 

predicted in the initial hypothesis, there is a constriction of heat flow which is mainly dominated 

by the intimate contact and, in less significant way, by the fibers distribution. The constriction of 

the streamlines at the rear side confirms the presence of the 2D heat flow as the streamlines are 

not straight. Instead the streamlines goes through a preferential path that is dominated by the 

presence of fibers in proximity with each other towards the contact point. There is also a greater 

influence of air present in the contact zone.  For initial time period, the heat flux contribution at 

the constriction zone was less than 2% than the maximum heat flux present on the top. However 

with increasing time especially after 30ms, the effect of heat flux at constriction zone is 

influencing the cooling of the top surface of the tape predominantly.  

 (a) 
(b) 
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Figure 4.18: Flux lines at different time steps (a) 5ms (b) 10ms (c) 25ms (d) 40ms (e) flux 

scale for the above figures 

Figure 4.17: Temperature and Heat flow in Solvay 2 for (a) 0.5ms (b) 15ms (c) 25ms (d) 50ms (e) 
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7.2 Temperature variation along the height 

The difficulty of the AFP process is the measurement of the volume temperature 

distribution inside the tape due to its small size. This is numerically possible by the measurement 

of average temperature at a particular height y and then calculating the evolution of the 

temperature along the height. The average temperature is measured based on the grid technique 

at a particular height y (section 6.2). Figure 4.19(a) shows the average temperature as a function 

of height (y) of the tape for different microstructures of Solvay tape. It can be seen that the 

maximum temperature is in little depths inside the surface (~25µm). This is contrary to the 

assumption of homogenous behavior of the tape leading to the maximum temperature located at 

the surface as widely used in the literature for AFP process[11][8]. It should also be noted that 

the speed of change in temperature for Solvay 3 is higher than Solvay 2 as the tape becomes in 

contact with the steel. This is due to the presence of the layer of matrix in Solvay 2 that is resisting 

the heat diffusion. The Solvay 3 has more fiber density near the rear side thus the diffusion of 

heat is faster. Moreover, the depth of the maximum temperature varies depending on the 

microstructure distribution that also affects the heat source distribution. Figure 4.19 (b) presents 

the temperature distribution for Suprem tape and it can be seen that although the maximum 

temperature is very close to the surface temperature. The microstructure is much more 

homogeneous therefore the temperature distribution is similar for both samples.  

0.00015 0.00020 0.00025 0.00030

300

400

500

600

T
em

p
er

at
u

re
 (

K
)

Depth (y (m) )

 Solvay 1

 Solvay 2

 Solvay 3

0.00015 0.00020 0.00025

300

350

400

450

500

550

T
em

p
er

at
u

re
 (

K
)

Depth (y (m) )

 Suprem 1

 Suprem 2

 

 

 

(a) 
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7.3 Temperature variation of the top surface with time 

In this section, the temperature change observed by the infrared camera during experiments 

is compared with the surface temperature obtained by the numerical model. Figure 4.20(a) shows 

the temperature of the tape surface for a time period of 50 ms for different recorded 

microstructures of Solvay tape. For the heating time of 25 ms, there is an excellent agreement 

with the experimental results for each microstructure. This strongly confirms our physical 

assumptions about the mechanisms of heating in prepreg tapes. However, the cooling rate is still 

slower for the numerical simulations in comparison to the experimental measurements. This could 

be due to the fact that during the heating time, the temperature is dominated by laser heating. 

When laser heating is stopped, rest physical constraint such as volume fraction, fiber distribution 

are also playing an important role. Moreover, during the image analysis in this thesis there was a 

loss of certain fibers. Therefore, the penetration of laser heating was deeper in the volume leading 

to the slower cooling in the tape. Figure 4.20(b) shows the temperature change for the Suprem 

tape. It was observed that the surface temperature after 25ms of heating of the Suprem tapes is 

higher than the Solvay. It was because in Suprem tapes the absorption of the heat is closer to the 

surface, due to the uniform distribution of fibers.  

Furthermore, it is important to see that the temperature of the top surface is approximately 

260°C in comparison with the bench temperature at 20°C. The thermal diffusivity of the material 

in the thickness being small, the temperature difference between the two faces of the tape is 

important as it would result in a high thermal gradient. The thermal state disparity between the 

lower and upper faces is likely to induce thermomechanical deformations and detachment of the 

fold during heating. This phenomenon was observed experimentally by Le Louët, but was 

checked to be maximum before reaching the maximum temperature.  

Figure 4.20 (c) (d) shows the normalized representation of temperature up to 50ms. It can 

be observed that with Solvay tape, the beginning of cooling is yet faster than the numerical. 

However with the Suprem tape there is a good agreement can be observed between numerical and 

experimental.   
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Figure 4.20: Comparison of average temperature of the top surface with experimental readings by 

the Infrared camera (a) Solvay (b) Suprem. Normalized temperature for (a) Solvay (d) Suprem 

7.4 Influence of rear face contact on temperature measurement on the tops 

surface 

The influence of non-perfect contact was evident in the flux lines distribution in Figure 

4.19. However, it is necessary to analyze how variation in contact would influence the average 

surface temperature estimation, especially in Solvay tapes as the microstructure suggests huge 

change in the rear contact zone. Figure 4.21 represents the average temperature estimated by the 

numerical model for a different type of contact over the same microstructure. Figure 4.21(a) 

shows different contact type established on the increased gap (2-10µm) between the steel and tape 

as compared to what was present based on real microstructure. It can be observed that for a time 

period of 50 ms, there is no significant change in the average temperature apart from a slight 

change in the maximum temperature at 25ms (<4%). However, a huge influence could be 

observed in the prediction of cooling rate after 50ms. It can be due to the reason that after 50 ms, 

the forward face temperature is affected by backside heat transfer and cools slowly. Figure 4.21(b) 

presents the influence of increasing the number of contact points as compared to the real case of 

micrograph. However with the increasing contact point has less influence on the overall top 

surface temperature.  
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Figure 4.21: Influence of RTC over the average temperature of the top surface and comparison 

with the experimental readings by the Infrared camera 
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The experiments also measured the temperature at the steel bench present just near the 

contact with the tape. The three thermocouples were placed in steel at different length of 0.25mm 

1.25mm and 3.25mm as shown in Figure 4.2. By solving the inverse problem, the temperature as 

well as the heat flux in the steel just near to the rear side of the tape was retrieved experimentally. 

Figure 4.22(a) shows its comparison with the numerical simulation results of the average 

temperature on the region in steel present just near the rear side of the tape at X (Figure 4.22(b)) 

for different microstructure. It can be seen that the temperature on the rear side is in maximum 

difference of 4K from the experimental value. It is important to note that the temperature 

measured differs depending on the microstructure. For example, Solvay 1 is heating more as 

compared to the other microstructure due to the presence of high number of fibers near to the rear 

side and lesser zone with just matrix. From this, it can be seen that the temperature on the rear 

side is influenced by the type of contact and also on the distribution of the fibers near the contact 

zone.  

          

 

 

Figure 4.22: (a) Schematic diagram of the zone where average temperature is measured (b) 

Average temperature near the contact zone with time  
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9. Partial Conclusion 

The objective of this study was to understand the thermal behavior of tape at microscale 

after a short exposition to a high density laser on its surface. Experimental measurement at this 

small scale is intrinsically difficult due to the sensitivity of the measuring instrument. Therefore, 

a 3D thermal model was developed to better understand the different parameters involved that 

can influence the tapes heated by a laser source. Through this numerical study, different 

microstructures of Solvay tape and Suprem tape were tested in the AFP process. Meshes in 

resemblance to the multiple microstructures of Solvay and Suprem were generated using Hough’s 

algorithm in Matlab. The zones impacted by the laser were tagged as the heat source region by a 

similar ray tracing technique with the assumption of no reflection. During the image analysis there 

was a loss of fiber volume fraction due to the lack of higher quality of micrograph.  

The heat source distribution of each microstructure was presented. It was observed that 

the scattering of the fiber position can highly influence the thickness of the tape with maximum 

heat absorption. Moreover, the width of this source distribution also depends on the type of 

microstructure, for example for Solvay the heat source is relatively sparse in comparison with the 

Supreme tape. It is important to note that in the Suprem tape, the heat source distribution is more 

or less similar due to its homogenous fiber distribution. Through numerical simulation, it was also 

observed that the heat flux lines go through a preferential path outside the one-dimensional axis 

depending on the point of contact of the tape with the steel.  

Furthermore, the temperature distribution along the thickness of the tape showed that the 

tape does not follow the assumption of a homogeneous medium, as mentioned in multiple 

researches. This inhomogeneity leads to the presence of maximum temperature at certain depth 

inside the tape depending on the type of microstructure. It can also be observed that the presence 

of a wide matrix region, in case of Solvay, on the top surface or bottom can highly influence the 

heating or cooling rate. This is due to the fact that the matrix layer increases the capacitive effects 

inside the fibrous medium.  

During the experiments, the tape was heated by laser for 25 ms and then cooled naturally. 

The average temperature observed by the infrared camera was thus compared to the numerical 

result of surface temperature. In the case of Solvay tapes, the temperature predicted by the 

numerical model during the heating is in good agreement for all types of microstructure. On the 

contrary, while cooling, initially the cooling is faster than the numerical result for 50 ms but later 

experimentally the cooling is slower. Additionally, the cooling rate is changing due to the higher 

differences in Solvay tapes microstructures.  The Solvay tape has varied contact zones from one 

microstructure to another. Similarly, for the Suprem tapes, the temperature estimated by 

numerical model showed less heating than the experimental one. Certain microstructural effects, 

such as fiber distribution, matrix layer, intimate contact zone, the volume fraction of the fibers, 

can be the reason for this discrepancy. Moreover, the reflection is also neglected in the current 

tests as in reality the experiments were done with laser heating at an angle of 10° from the vertical 
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position. The inter-reflection can affect the overall heat source distribution, thus influencing the 

overall temperature distribution. All these factors lead to the non-full quantification of the real 

problem.  This can be a part of future perspective where a more sophisticated images or overall 

image analysis approach could be selected for countering the microstructural effects. 

Additionally, a complete thermal model encountering the reflection and inter-reflection could 

improve the current model further.  
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General Conclusion and Perspectives 

The primary objective of this thesis focused on the estimation of the thermal property starting 

from the scale of a single fiber to the actual microstructure of the composite.  

 

The first chapter introduced the 3 method for the estimation of longitudinal thermal 

conductivity and volumetric heat capacity of a single fiber. Initially, it discussed various approaches 

present in the literature for the measurement of longitudinal thermal conductivity and the advantages 

of using 3 method over other approaches for single fiber. The 3 method was successfully used in 

the literature for single fiber, but, the analytical model for the 3 response of voltage was always 

simplified in order to apply for estimation of thermal conductivity and heat capacity individually at 

different frequency ranges. Bringing a new contribution in this field, we focused in this thesis on the 

measurement of longitudinal thermal conductivity and volumetric heat capacity simultaneously from 

a single working frequency range. This was made possible by a sensitivity analysis over the wire or 

fiber-like filament. In this approach, a frequency window was selected where the 3 voltage response 

was highly sensitive to small change with the unknown parameters. It showed that the length of the 

sample controls also the frequency window. For the testing sample chromel wire, carbon fiber type 

FT300B and FT800H, a length of about 1.5 mm was chosen in such a way that the sensitivity is high 

in the frequency range of 1-100Hz.  

The analytical model from Lu[1] is the outcome of multiple assumptions that motivated the 

development of a numerical model to check the applicability of the analytical model to our 

experiments. Under vacuum, the comparison showed a good agreement between analytical and 

numerical models. The numerical model can take into account convective losses and showed, in this 

case, a huge drop (1/8) in the value of 3 voltage response. The quantification of this drop was crucial 

and needed to be analyzed through experiments. The 3 method under vacuum was initially validated 

with the thermal property estimation of a single chromel wire and showed good agreement with the 

results from the literature. Measurements were also performed for experiments under atmospheric 

conditions to quantify the influence of convective losses in the thermal property measurement using 

the analytical model. It showed an increase in the estimated thermal conductivity value by 390% from 

the literature if the convective loss are neglected under atmospheric condition. It was not possible to 

quantify the convective heat transfer coefficient h. Indeed multiple correlations could not provide 

enough accuracy on h value. In addition, the other alternative which consisted in estimating the h 

values simultaneously with the thermal conductivity was not possible due to strong correlation 

between the thermal conductivity and heat transfer coefficient. The use of vacuum was therefore 

shown to be unavoidable. 

The thermal properties of two commercial carbon fibers, Toray FT300B and FT800H, were 

also measured with our 3 method and were shown to be in good agreement with the data provided 
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by the supplier. A detailed uncertainty analysis for each known parameter measurement along with 

the effect of the thermal contact resistance between fiber and sample holder was also provided.   

 

The second chapter extended the application of the 3 method for measurement of thermal 

conductivity in the radial direction of a single fiber leading to the characterization of the complete 

conductivity tensor of fibers, well known to be anisotropic materials. The idea was to place the fiber 

in de-ionized water surrounding to induce radial heat transfer (heat sink effect) while maintaining 

electrical insulation. The experimental setup was similar to the longitudinal one except that the fiber 

was placed in the de-ionized water. Initially, a 1D radial analytical model along with a 1D radial finite 

difference model were developed for this experimental situation. Preliminary results with the 

experiments and fitting analytical model showed non-accurate fittings thus a non-proper estimation 

of the radial thermal conductivity. Moreover, the sensitivity analysis showed that the 3 voltage 

response was much less sensitive (<0.06) to the radial thermal conductivity than to the longitudinal 

one. With the help of a 2D heat transfer model, a much better fitting was obtained for the one could 

not neglect the longitudinal transfer contribution to the temperature measurement. The experimental 

results for single fiber type FT300B were therefore fitted with the 2D FEM heat transfer model by 

imposing the longitudinal thermal conductivity obtained from chapter 1 results. The estimated radial 

thermal conductivity of FT300B carbon fiber was found about 10 times lower than the axial one and 

showed a much larger scattering due to the smaller sensitivity coefficients. It was also observed that 

the sensitivity of the voltage measurement to the radial thermal conductivity could be improved by 

choosing a surrounding medium that would have a higher thermal conductivity. 

 

The third chapter focused on effective thermal conductivity calculation at the mesoscale of 

the CFRC. In the literature, there are theoretical models present that work with various strong 

assumptions, which is not valid for the real composite. Therefore, numerical homogenization models 

using the actual microstructure of the material were developed. The bibliographic study showed a 

choice of the appropriate scale of heterogeneity and the importance of the representative elementary 

volume and the boundary conditions applied to calculate the effective thermal properties. In this 

chapter, multiple meshes with different types of distribution of the fibers starting from square packed, 

random and clustered were studied.  Initially, the influence of samples length on the estimation of the 

effective thermal conductivity tensor for various boundary conditions were analyzed. It was found 

out that the length of the microstructure also plays an important role depending on the considered 

direction with respect to fibers and on the chosen type of boundary conditions. Neuman and Dirichlet 

boundary conditions type were shown to be non-adapted to an efficient determination of effective 

properties for they induce edge effects whose length may be difficult to predict.  

The influence of volume fraction on the effective thermal conductivity were also analyzed that 

contains the effective thermal conductivity estimation by different theoretical models such as Voigt-

Reuss, Hashin-Shtrikmann, Maxwell, and Rayleigh. This was compared with the one estimated 

numerically by implementation of different boundary conditions. Moreover, the impact of different 
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fiber distributions no significant change as compared to a square cell. At a bigger scale of the 

composite such as tapes, the existence and size of a REV was analyzed for different commercial tapes, 

Solvay and Suprem. This was crucial as advanced manufacturing technique like automated fiber 

placement (AFP) consider that the tapes are homogenous with linear temperature distribution while 

heating. It was found out that the Suprem tapes were easily homogenizable due to the good 

distribution of the fibers in the matrix contrary to the Solvay. Due to the lack of appropriate 

distribution of the fiber in the composite, scattering of effective transversal conductivity in Solvay 

tapes were huge and it was to determine the REV. Our study shows the existence of a strong 

transversal conductivity gradient in the thickness of Solvay that suggests a non homogenizable 

situation. 

 

The fourth chapter focused on the thermal behavior of the tapes during the AFP process as 

the final laminate of this manufacturing process is highly dependent on its thermal history. In 

particular, the understanding and mastery of heat transfer at the scale of a single tape alone were 

essential for better analysis of the composite quality. Initially, meshes in close resemblance with the 

real tapes (Solvay and Suprem) were generated with the defined heated zones or elements by the 

laser. Heat source distribution for each mesh was represented. In case of Solvay tape, the heat source 

distribution was highly dependent on the tape microstructures (non-uniform fiber distribution) 

contrary to the Suprem tape where it showed rather uniform heat source distribution. A 3D thermal 

model for the laser heating of a composite tape was established.  

The simulation results for temperature distribution through the thickness of the tape 

confirmed that the maximum temperature was inside the volume of the tape rather than at the surface 

specifically for Solvay tape. This distribution along the thickness was also highly dependent on the 

type of microstructure. Additionally, the numerical analysis also showed that the heat transfer had 

preferential paths that depend on the fiber homogeneity in the composite and degree of contact of the 

external faces of tapes. Particularly in the study of the Solvay tapes, results showed that the 

establishment time of the flux at the interface with the steel substrate could be long, as suggested in 

the experimental work of Violaine Le Louët [2]. Simulation results were also compared to her 

experimental ones on the same materials. Results for both tapes were consistent with the experimental 

results during the heating, thus confirming our basic physical assumptions at the microscopic scale. 

A slight discrepancy was nevertheless observed during the cooling, but this could be due to the fact 

that there is a loss of fiber fraction during image analysis or simplification of the contact zone or due 

to the assumption of no reflection during heating. 
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This thesis focused on multiscale study towards thermal characterization of carbon fiber 

reinforced composite. The area of this objective is quite vast and yet multiple aspects are remaining 

that requires further attention in research.  

 Microscale: Although in this thesis, the anisotropic thermal conductivity tensor was measured 

yet the radial thermal conductivity has huge uncertainty in the result. As discussed previously, 

use of a higher conductivity surrounding medium such as phase change material could result 

in better measurement of radial thermal conductivity. Moreover, at the microscale, there are 

local factors such as the interphase of fiber/matrix or contact fiber/fiber that is still needed to 

be characterized.  

 Homogenization at Mesoscale: Homogenization of more complex microstructures such as 

orientation or interphase contact needs to be done in the future.  

 Tapes in Automated Fiber Placement (AFP): Improvement scope is present in terms of 

similarity of mesh with the real microstructure. A better quality of image could be 

advantageous in countering the loss of fiber volume fraction. Moreover, the reflection was 

also neglected in the current tests. The inter-reflection can affect the overall heat source 

distribution, thus influencing the overall temperature distribution. With the preliminary data 

of heat source distribution and estimated effective property of the tapes, a simple 1D 

continuous model can be developed in near future for prediction of temperature distribution 

in the tape during AFP. 

 

 

--- 

 

 

 

 

 

 

 

 

 

 

[1]  Lu L, Yi W and Zhang D L 2001 3ω method for specific heat and thermal conductivity 

measurements Rev. Sci. Instrum. 72 2996–3003 

[2]  Le Louet Violaine 2018 Etude du comportement thermique de bandes composites pre-

impregnees au cours du procede de fabrication AFP avec chauffage laser (Universite de 

Nantes, France) 

 

 



General Conclusion and Perspectives                  

126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices 

 

127 

 

Appendices 

A. Algorithm for Fiber Detection 

In this section of appendix, the circular fiber detection from the microscopic 

images are discussed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Micrograph of the 

tape 

Converting the 

image to binary 

(Matlab) 

 

Detection of the pixel data for 

the center of the fibers 

through Hough Transform 

Algorithm (Matlab) 

 

Pixel to coordinate 

system (Matlab) 
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centers with 

intersecting fibers 

(Matlab) 

 

Storing the data for 

center coordinate of the 
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Detecting the pixel 
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using ImageJ 

Storing the data for 
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B. Algorithm for Mesh generation 

The center position of the fiber and coordinates of boundary points detected by the above 

algorithm is used to create geometry in Gmsh. After meshing the geometery, the elements hit by 

the laser (normal incidence) are detected by following algorithm.  
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(Matlab) 
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Titre :  De la détermination des propriétés thermiques des fibres à la modélisation multi-échelles du 
transfert de chaleur dans les composites 

Mots clés :  la méthode 3ω,  conductivité anisotropie,  homogénéisation,  AFP 

Résumé: La prédiction de la conductivité 
effective des composites nécessitent des 
informations aux petites échelles et le 
développement de modèles pertinents. Dans 
notre travail, la méthode 3ω est utilisée pour 

estimer la conductivité thermique axiale et 
radiale ainsi que la capacité thermique 
volumique de fibres de carbone. En utilisant des 
modèles analytique et numérique, une analyse 
de sensibilité est effectuée pour choisir une 
plage de fréquence de travail appropriée. Une 
source de courant constante sur la méthode 3ω 
utilisé pour mesurer la conductivité thermique de 
chromel et de fibres de carbone de type FT300B 
et FT800H. Les conductivités thermiques axiales 
estimées sont en accord avec les valeurs de la 
littérature.  La conductivité thermique radiale 
estimée pour  la fibre de carbone FT300B est 10 
fois inférieure  à la valeur axial  et affiche une   
incertitude bien plus incertitude bien plus  

grande en raison de faibles coefficients de 
sensibilité La conductivité thermique effective a 
été calculée à l’aide d’une technique 
d’homogénéisation pour des microstructures 
avec des carrées uniformes (100 fibres) et 
bandes de composites (700 fibres). Un modèle 
thermique 3D est développé pour la simulation 
de la dépose de bandes chauffées par une 
source laser dans placement automatique de 
fibres (AFP). Des maillages adaptés aux 
microstructures des bandes Solvay et Suprem 
sont générés. La distribution de la source de 
chaleur dans le composite au cours de sa 
fabrication a été calculée. Son influence sur la 
distribution de la température montre une forte 
inhomogénéité de la température à l'intérieur 
de la bande. La température moyenne calculée 
est comparée aux résultats expérimentaux.  
Les résultats confirment le besoin de modèles 
continus spécifiques. 

 

Title :  From the determination of thermal properties of fibers to multiscale modeling of heat transfer 
in composites  

Keywords : 3ω method, Anisotropic conductivity, homogenization, AFP 

Abstract:  The prediction of effective thermal 
properties of composite requires information at 
small scale and also appropriate numerical 3D 
models able to account explicitly the local 
distribution of fibers. In our work, the 3ω method 

is used for estimating the axial and radial 
thermal conductivities and volumetric heat 
capacity of single carbon fiber. Using analytical 
and numerical models, a sensitivity analysis is 
performed for choosing a proper frequency 
range. A constant current source with differential 
and lock-in amplifiers are used to measure the 
thermal conductivity of chromel, and FT300B, 
FT800H carbon fibers. The measured axial 
thermal conductivities are in good comparison 
with the literature values. The estimated radial 
thermal conductivity of FT300B carbon fiber is 
10 times lower than the axial one and shows 
much larger confidence band due to smaller. 

sensitivity coefficients. The computation of the 
effective thermal conductivity by 
homogenization technique is done for uniform 
square cell microstructures (100 fibers) along 
with composite tapes (700 fibers). The effective 
properties of tapes are interesting for advanced 
manufacturing techniques such as Automated 
Fiber Placement (AFP). A 3D thermal model is 
developed for the tapes heated by a laser 
source. Meshes in resemblance to the multiple 
microstructures of Solvay and Suprem tapes 
are generated. The heat source distribution 
within the composite during manufacturing is 
presented and the temperature distribution 
shows a strong inhomogeneity of the 
temperature inside the tape. The calculated 
average temperature is compared with the 
experimental results. Results confirm the need 
for specific continuous models. 
 

 


