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Abstract

Ecole doctorale Matisse

Doctor of Philosophy

Physical layer secret key generation for decentralized wireless networks

by Iulia Tunaru

Emerging decentralized wireless systems, such as sensor or ad-hoc networks, will demand

an adequate level of security in order to protect the private and often sensitive informa-

tion that they carry. The main security mechanism for confidentiality in such networks

is symmetric cryptography, which requires the sharing of a symmetric key between the

two legitimate parties. According to the principles of physical layer security, wireless

devices within the communication range can exploit the wireless channel in order to pro-

tect their communications. Because of the theoretical reciprocity of wireless channels,

the spatial decorrelation property (e.g., in rich scattering environments), as well as the

fine temporal resolution of the Impulse Radio - Ultra Wideband (IR-UWB) technology,

directly sampled received signals or estimated channel impulse responses (CIRs) can be

used for symmetric secret key extraction under the information-theoretic source model.

Firstly, we are interested in the impact of quantization and channel estimation algo-

rithms on the reciprocity and on the random aspect of the generated keys. Secondly, we

investigate alternative ways of limiting public exchanges needed for the reconciliation

phase. Finally, we develop a new signal-based method that extends the point-to-point

source model to cooperative contexts with several nodes intending to establish a group

key.

https://www.univ-rennes1.fr/english/home/
http://matisse.ueb.eu/eng/
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Chapter 1

Introduction

From over-the-air to paper and wires and then back to over-the-air. Telecommunica-

tions, or the sharing of information between two spatially distant entities, includes any

form of communication from smoke signals (17th century BC) to paper messages (2nd

century BC), telegraphs, land-line telephones (19th century), and wireless communi-

cations, which have known a tremendous development in the last century. Although

the term “wireless” strictly refers to the communication medium, wireless communica-

tions are popularly assimilated to the communications using the radio spectrum (i.e.,

electromagnetic waves between 9 kHz and 300 GHz), which is just one of the possible

resources for transmitting information wirelessly, together with, e.g., electromagnetic

optical communications or sound waves.

Between centralized and decentralized. Once the transmission technologies were in place,

networks started to appear and two main architectures evolved in parallel: the central-

ized paradigm, implemented for example in cellular networks,1 and the decentralized one

represented by the Internet2 and more recently by mobile ad hoc networks (MANET).

Nowadays, the two trends are becoming interleaved in the context of new concepts

such as the Internet of Things, ad-hoc device-to-device (D2D) communications, Cloud

services linked to decentralized wireless sensor networks (WSN), vehicular ad-hoc com-

munications (VANET) or wireless personal area networks (WPAN), including body area

networks (WBAN). However, the decentralized characteristic remains representative at

least under short-range connectivity in these emerging networks.

The What and The How. Telecommunications usages have also evolved across decades

from military, professional or convenience-oriented to entertainment-focused (i.e., a data

1Cellular networks are classified as centralized with respect to the core network, which is responsible
for routing, authentication etc.

2Although the Internet flows nowadays can be arguably considered more centralized than in its
beginnings, we are herein referring to the network structure itself.

1



Chapter 1. Introduction 2

consumption model) and soon probably to a user-centric (i.e., a data production model),

as suggested by the aforementioned types of networks. This implies a diversification in

communication requirements such as rate, latency, reliability, and security. Whereas

achieving the former three can be a layer-dependent task, ideal security solutions should

holistically consider the technology, the transmission medium, the network structure

and the data usage.

Emerging decentralized wireless networks

In modern device-centric applications, a considerable amount of data can be locally pro-

duced, exchanged, and collected for purposes such as energy monitoring and optimiza-

tion, logistics, navigation etc. Context-aware services in Smart Cities, WSN, e-Health

applications, contactless payment transactions, nomadic social networking, Intelligent

Transportation Systems (ITS) are some of the examples where emerging wireless net-

works will have to carry sensitive information between remote users or from remote

sensors to a core-network.

Most wireless networks capable of supporting such applications might require peer-to-

peer interactions between end-devices or equipped users under opportunistic connectivity

conditions. This type of scenarios are foreseen by WiFi Direct and D2D options in pend-

ing 5G standards, IEEE 802.11p-compliant VANET, and short range technologies (e.g.,

Near Field Communications (NFC), Bluetooth-Low Energy (BT-LE), IEEE 802.15.4 or

Zigbee, IEEE 802.15.4a or IEEE 802.15.6 Impulse Radio - Ultra Wideband (IR-UWB)).

These emerging decentralized and/or ad-hoc networks might be subject to hardly pre-

dictable mobility patterns, erratic users’ activity, and varying devices densities, hence

requiring fine flexibility, reactivity and scalability. Consequently, light decentralized se-

curity and privacy solutions should accompany the establishment of this kind of networks

from their early stages. Often, security is an overlay in terms of system design, some-

times considered even unnecessary unless experience proves the contrary. It is therefore

essential to integrate security solutions as much as possible and by design within the

communication devices. In this sense, outsourcing security to include lower layers as

well (e.g., physical or MAC) could be a promising solution.

In this thesis, we study the possibility of generating security material, namely secret

keys for symmetric cryptography, using the radio physical layer in the context of wire-

less decentralized networks. Our studies focus on the emerging Impulse Radio - Ultra

Wideband (IR-UWB), a technology typically employed for low data rate transmissions

or for high-precision ranging purposes in low-complexity sensor networks and poten-

tially also in more powerful devices with localization requirements (e.g., multi-standard
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smartphones). The choice of this radio localization technology is justified by the unique

properties of the corresponding channel impulse responses (CIRs), as illustrated in Sec-

tion 1.3. Moreover, typical decentralized networks will require capabilities for providing

context-aware services, which will probably encourage the proliferation of IR-UWB in

such networks.

This first introductory chapter begins with a progressive state of the art on security

issues. Section 1.1 describes general security schemes, including a case study on WSN,

and introduces the notion of physical layer security. Section 1.2 delves into information-

theoretic models for key agreement and physical layer key generation models and meth-

ods. Finally, we provide an overview of IR-UWB in Section 1.3 and present the structure

as well as the main contributions of the thesis in Section 1.4.

1.1 Communications security

Historically, security systems can be classified in three categories [1]: concealment sys-

tems (e.g., steganography), privacy systems that require a physical device to recover the

message, and secrecy systems that hide the information using codes or ciphers. Nowa-

days, information security has extended to a set of measures to counteract certain types

of attacks (e.g., eavesdropping, message modification, replays, denial of service, intrusion

etc.). This led to the development of a set of security goals or principles: confidentiality,

integrity, availability (also known as the CIA triad), extensions of data integrity (origin

authentication, non-repudiation, freshness [2]), and even accountability and assurance

[3].

Security solutions follow the aforementioned general principles but they are usually de-

fined with respect to the application constraints and to the communication protocols.

In current communication systems following the layered OSI model, security is imple-

mented separately at each layer as a supplementary cryptographic feature (e.g., IPSec

or SSL protocols). In TCP/IP-alternative architectures, such as the Recursive Internet-

work Architecture (RINA) [4], security is considered as part of the network design and

cryptographic tools are only needed for reinforcement.

Overall, the majority of these security mechanisms involve the use of cryptographic

primitives such as symmetric/asymmetric cryptography, hash functions, digital signa-

tures. In the following, a short historical review of encryption is presented, followed

by an illustration of classical security schemes for decentralized networks, and finishing

with physical layer security and its two main approaches: secrecy capacity and secret

key generation, the focus of this thesis.
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1.1.1 A historical perspective

Since its early beginnings, the evolution of encryption has been an iterative process

alternating between designing more powerful ciphers and breaking them. Starting with

the ancient transposition and substitution ciphers, namely the “scytale” cipher (6th

century B.C.) and Caesar’s cipher (1st century B.C.), respectively, continuing in the

Middle Ages with more sophisticated examples like the poly-alphabetic Vigenère cipher,

and until the end of World War II, the encryption of communications remained a matter

of political and military interest [5]. The only paradigm shift over this period happened

at the beginning of the 20th century with the arrival of encryption and cryptanalysis

machines. This also led to the invention and popularization of computers, which found

their way in the private sector and created the need for publicly available encrypting

methods.

If until the 1970’s the encryption security relied on the secrecy of both the encryp-

tion algorithm and the key (i.e., symmetric key), the approval of the Data Encryption

Standard (DES) in 1976 by the future National Institute of Standards and Technology

(NIST) in the US, made the encryption algorithm public. DES is a block cipher using a

56-bit key and a mix of XOR operations, duplications, substitutions and permutations

[6]. In consequence, it respects Shannon’s practical security principle of “confusion”

(i.e., a ciphered character depends on several parts of the key) and “diffusion” (i.e., a

character change in the plaintext incurs several changes in the ciphered text). Since

DES was broken for the first time in 1997, it has been replaced by Triple-DES (1999)

and the Advanced Encryption Standard (AES, 2001), a substitution-permutation block

cipher with a key of maximum 256 bits [6]. In parallel, faster stream ciphers based

on linear/nonlinear shifting have also been developed (e.g., RC4, 1987) but they are

currently considered less secure than block ciphers [6].

Since the standardization of DES, the security of symmetric cryptography relies on the

secrecy of the encryption key and therefore, on its characteristics: length, randomness,

distribution method. The concerns regarding symmetric key distribution catalyzed the

adoption of public key cryptosystems after the invention of the key exchange protocol

by Diffie, Hellman, and Merkle [7]. This led to the invention of Rivest-Shamir-Adleman

(RSA) encryption algorithm (i.e., asymmetric cryptography) [6]. Contrary to the sym-

metric secret key approach, RSA relies on individual private and public keys with lengths

between 1024 and 2048 bits and on the prime factorization of large numbers, which has

not been yet proven to be efficiently solvable (i.e., they are considered computationally

hard for the moment). More recent public key cryptosystems, such as Elliptic Curves [6],

have replaced the factorization problem with the Discrete Logarithm Problem (DLP).

Asymmetric cryptography shifts the challenge from the secret key distribution side to
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the certification of public keys, which is conceptually an easier task because of the inher-

ent signature mechanism of public key cryptography (PKC). However, PKC is deemed

to be more complex than symmetric cryptography regarding encryption and decryption

operations, and it is thus employed mainly for symmetric key distribution and not for

data encryption itself. The most prevalent example of synergy between symmetric and

asymmetric cryptography is the Transport Layer Security protocol (TLS, 1999) initial-

ized at the session layer, which allows an authenticated symmetric key exchange between

a client and a server and subsequent symmetric encryption of the communications.

The symmetric key distribution problem, one of the main challenges of security im-

plementations, has been studied from various angles and within various fields: cryp-

tography, networking (e.g., key distribution protocols), quantum communications, and

information theory. In the next section, several classical key distribution solutions will

be presented and discussed through the case study of WSN.

1.1.2 Security in decentralized networks

The rapid development of wireless technologies has led to the emergence of several types

of wireless ad-hoc networks such as mobile ad-hoc networks and wireless sensor networks

[8]. While MANET are usually composed of easily replaceable mobile nodes, WSN

are large networks consisting of resource-constrained nodes. The latter have sensing,

processing and communication capabilities and are employed mainly in health, military,

environmental or domestic applications [9]. The sensor nodes can be randomly deployed

in an interest area in order to sense, eventually process, and route data through a

multihop architecture to a gateway (the sink) connected to the Internet.

In the following, for illustration and discussion purposes, we will sometimes take WSN

as an example of decentralized networks. WSN are subject to typical design constraints

that ultimately impact the entire sensor network protocol stack. First of all, sensor

networks should be fault tolerant and scalable because of the densely deployed low-cost

and hardware-constrained nodes. Secondly, the network topology should be maintained

in the absence of any infrastructure and in the event of node failure or node redeploy-

ment. Finally, sensor lifetime maximization can be critical in some WSN. The survey

in [9] offers a summary of the main physical, data link and network protocols specific to

sensor networks.
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Security measures in WSN

Security measures in the WSN communication stack can be implemented at several

layers: physical/link layers (e.g., jamming detection), link/routing layers (e.g., secur-

ing data dissemination by link authentication, route construction authentication etc.),

routing/transport/application layers (e.g., securing data aggregation or the data itself).

Asymmetric or public key cryptography has the advantages of scalability of secure com-

munications between any two nodes of the network and digital signature support im-

plying an intrinsic authentication capability. However, it is deemed to be a solution of

high computational complexity, which also relies on the cumbersome authentication of

public certificates by third-party certification authorities.

As a partial solution, lower complexity variants of PKC have been implemented on low-

power sensor nodes for authentication and key distribution [10]. In order to solve the

issue of authentication of public keys, ID or location based PKC relying on pairing func-

tions has been proposed as an alternative to classical PKC. In this new PKC framework,

public and private keys are either derived from identification information using a secret

sharing scheme in a MANET context [11] or directly from location information in WSN

[12]. Nevertheless, location-based PKC requires the secure distribution of location-based

private keys in an early post-deployment phase. Secret sharing and location-based pri-

vate keys can also be exploited to provide end-to-end data confidentiality, authenticity

and availability in sensor networks that can benefit from a network bootstrapping phase

[13].

The main solution for encrypted communications in sensor networks remains symmetric

cryptography because of lower computational overhead of the encryption and decryption

operations [8]. Conversely, it has no support for digital signatures and it is not very

scalable because of the challenge of distributing a shared secret key between each pair

of nodes.

Symmetric key management protocols

General solutions Numerous key management techniques for general networked sys-

tems have been already developed [2] and can be classified according to: i) the number

of users/servers participating in the key generation phase (two-party or conference pro-

tocols); ii) the method of key establishment (key transport or key agreement protocols).

Key transport protocols imply that key generation takes place at one user or server

and is then distributed among the concerned parties using symmetric or asymmetric
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cryptography. Despite their diversity, all the solutions based on symmetric encryption

imply the existence of an initial secure channel such as a global key between all nodes

or an initial key between each node and an online server (Key Distribution Center) that

distributes pairwise session keys. The global or the initial keys are an important security

breach with respect to an internal attacker that has compromised a node. The online

server also represents a single point of failure in the network and it is not compatible

with the decentralized architecture. Symmetric keys can also be transported using PKC

with the advantages and disadvantages discussed before.

Key agreement protocols are key establishment protocols in which the key is a function

of inputs from all users. Most of the existing schemes are based on the Diffie-Hellman-

Merkle protocol, the precursor of PKC, which relies on the computational difficulty of

reversing an exponential operation, also known as the Discrete Logarithm Problem. The

steps of the protocol are presented in Alg. 1, where sA and sB are the initial private

secrete keys of A and B, respectively, q is a large prime number, g is a primitive root of

q,3 and s is the shared secret key. The numbers q and g are considered public and can be

therefore agreed upon by the use of a public channel. Although it is inherently adapted

to decentralized networks, in order to be secure, this protocol requires the generation

of sufficiently long keys and it is therefore computationally expensive to implement in

networks like WSN.

Data: g, q, sA, sB

Result: s

A computes pA = gsA mod q ;

A sends pA to B;

B computes pB = gsB mod q ;

B sends pB to A;

B computes s = psBA mod q ;

A computes s = psAB mod q ;

Algorithm 1: Diffie-Hellman-Merkle key exchange protocol between A and B

WSN-oriented solutions A recent survey [14] makes a classification of the main

methods to distributively share symmetric secret keys in WSN, recovered under the

name of “key pre-distribution” or the generation of online pairwise keys using preloaded

key materials. This approach has two main components: key material distribution and

key agreement.

3A number g is the primitive root of q if for every a relatively prime with q there exists k s.t.
gk = a mod q.
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Key agreement focuses on how to generate scalable shared keys based on preloaded

materials. In Blom’s scheme, a central authority computes a public matrix P and a

secret matrix S over a finite field GF(q), where q is a large prime number. It then

generates a secret matrix A based on P and S and loads each node indexed by i with

the i-th columns from P and A. When two nodes want to generate a shared key they

exchange their public columns and apply a multiplication operation. A variant of Blom’s

scheme consists in replacing the matrix operations with bi-variate polynomial operations

on the IDs of the nodes, which are now exchanged between nodes in order to generate

the shared key.

Key material distribution can be classified into three categories.

• Random key material distribution is represented mainly by Random Key Pre-

distribution (RKP), a method based on random graph theory. According to RKP,

each node is preloaded with a set of keys randomly chosen from an universal pool,

so that any two neighboring nodes have a certain probability of sharing the same

key. If the nodes do not share a key, they have to negotiate a key through a secure

route. Several extensions of RKP have been proposed in order to protect against

weaknesses such as node compromise, lack of authentication because of the reuse

of the same key by several nodes, or the disadvantages in terms of memory storage.

• Deterministic key material distribution replaces the random graph with a strongly

connected regular graph or with a multi-dimensional grid. In the first approach,

each node is preloaded with a certain number of keys or key materials (e.g., poly-

nomials) corresponding to its adjacent links. In the second approach, each node

is assigned a k-dimensional ID and is preloaded with key materials allowing it to

generate shared keys with any of the nodes whose IDs differ from its own in only

one dimension.

• Location-based key material distribution aims at improving the performance of

aforementioned distribution schemes by taking into account the location. This can

be achieved either by a cell-splitting strategy or by a pre-deployment estimation

of the proximity of the nodes.

The final “key pre-distribution” solutions have different memory costs and levels of

resiliency to node compromise [14], but are less scalable in time, i.e., they do not enable

key renewal by design.
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1.1.3 Physical layer security

Information-theoretic security

In his paper from 1949 [1], Shannon applies the mathematical concepts developed in his

previous work on communication theory (i.e, entropy and conditional entropy or equivo-

cation) to security aspects. Starting from the parallel current work in cryptography (i.e.,

the study of codes and ciphers), he builds a “theory of secrecy systems” that sees cryp-

tography as the means of creating a secrecy system. Despite the information-theoretic

approach, this fundamental work articulates itself around a cryptanalyst’s point of view

and enriches it with a stochastic dimension: given the a priori knowledge of the key

(K) distribution, the message (M) statistics (e.g., the redundancy of the language of

the message), and the intercepted encrypted message or cryptogram (EK(M)), what are

the a posteriori probabilities of each possible message? Also, the article investigates the

minimum length of the intercepted sequence for which the solution of the cryptogram

becomes unique (i.e., the uncertainty of the cryptanalyst or the equivocation on the

message H(M |EK(M)) vanishes).

Based on these considerations and the newly introduced algebraic formalism, the pa-

per gradually studies the properties of three types of secrecy systems: perfect, ideal

and practical. Perfect secrecy (i.e., information-theoretic security) supposes that the

cryptanalyst gains no knowledge of the initial message from the cryptogram, or equiv-

alently, that H(M |EK(M)) = H(M). This relation leads to the impractical condition

that the encryption key should be at least as long as the message. An ideal system

requires that the equivocation on the message and the equivocation on the key remain

bounded, ideally by H(K), when the length of the intercepted message goes to infinity.

These systems are deemed complex because they must be designed in close relation to

the message space, which should have a uniform a priori distribution (i.e., the message

should not contain any redundancies before encryption). Finally, practical secrecy is dis-

cussed by pointing out that even though the equivocation vanishes for sufficiently large

intercepted lengths, the “work” needed to find a unique solution to the cryptogram can

be a differentiating factor for ciphers.

The final chapter of [1] examines the fundamental trade-offs between several desirable

properties of secrecy systems, most of which are still relevant today and represent fun-

damental metrics in various research areas: i) amount of secrecy (information-theoretic

security); ii) key length (key distribution); iii) complexity and message expansion at ci-

phering (cryptography); iv) error propagation after deciphering (less pertinent because

of the discovery of powerful error-correcting codes).
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Figure 1.1: Security approaches

Currently regarded as the “father” of information-theoretic security, Shannon also ini-

tiated a general security framework outlining the links between what would later be-

come two different approaches to security: the information-theoretic security (revisited

in 1975 by Wyner [15]) and the computational security (i.e., the traditional vision of

cryptographic security in today’s communication networks).

Information-theoretic security refers to the property of a system that will remain secure,

i.e., the leaked information to the adversary is zero (perfect secrecy) or asymptotically

zero, given an adversary with unlimited computational power.4 On the contrary, classical

cryptography relies on the principle of limited computational power of an attacker: if

no efficient attack algorithm is found for the considered symmetric encryption algorithm

or if the involved mathematical operation is considered hard (e.g., prime factorization

of large numbers or discrete algorithms over finite groups), the attacker is left with the

brute force choice that will take too much time to solve.

A scheme of the various paradigms of security is given in Figure 1.1. An intermediate

notion between the two approaches of security is provable computational security. One

would say that RSA is provably secure if it were proved that no efficient algorithm

for prime factorization exists, but the scheme would still be vulnerable in front of an

attacker with unlimited computational power.

Information-theoretic security can be achieved in several contexts:

• Vernam’s one-time padding encryption scheme proposed by Shannon (i.e., XOR-

ing of the message with a same-length key), which achieves perfect secrecy.

• Shamir’s secret sharing scheme with perfect security (i.e., a secret is divided into

unique parts that are distributed amongst users and the secret can only be recon-

structed with a certain minimum number of parts).

• Private Information Retrieval schemes, where a user interrogates one or several

non-cooperative servers for retrieving a piece of information while keeping it private

from the servers.

4The equivalent term in quantum cryptography is “unconditional security”.
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Figure 1.2: Degraded wiretap channel

• Secure Multi-Party Computation, in which a group of users wish to compute jointly

a function over their inputs while keeping the inputs private.

• quantum key distribution (QKD) [16] based on quantum properties: polarization

properties of individual photons or transmitted light pulses cannot be reliably read

by a passive eavesdropper without knowing certain parameters of the transmission

or without revealing his presence. More details about QKD are provided in Section

1.2.2.

• physical layer security, in which the assumption of an imperfect communication

channel offers the opportunity of information-theoretically secure communications

with weaker assumptions than perfect secrecy. Physical layer security has two main

study components: secure communication and secret key agreement, the focus of

the present thesis.

Secure communication over imperfect channels

For the definition of “perfect secrecy”, Shannon [1] considers that the attacker can have

access to a perfect copy of the encrypted message, meaning that the transmission is

done over a noiseless public channel. In physical communications, especially in the

wireless case, the transmissions are affected by noise and other random phenomena,

which must be compensated by channel encoding in order to achieve reliability [17].

Based on this observation, Wyner [15] imagines a new type of channel model called the

“wiretap channel model” (WTC, 1975) represented in Figure 1.2.

The perfect secrecy condition would be expressed as: I(M ;Zn) = 0. Instead, Wyner

[15] proposes the less stringent and more tractable definition of “weak” (Eq. (1.1))

secrecy based on the behavior of the leaked information I(M ;Zn). This definition is

later extended to “strong” secrecy (Eq. (1.2)).

lim
n→+∞

1

n
I(M ;Zn) = 0 (1.1)

lim
n→+∞

I(M ;Zn) = 0 (1.2)
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The secrecy capacity is defined as the maximum communication rate at which Alice and

Bob can communicate while guaranteeing both reliability (Eq. (1.3)) and strong or weak

secrecy of their communication with respect to Eve, also called a wiretapper [18]. In this

model, it is assumed that Eve knows the input message space as well as the encoding

and the decoding functions that define the WTC code.

lim
n→+∞

P(M 6= M̂) = 0 (1.3)

Wiretap channel models. For the mentioned WTC model, also called the degraded

WTC, the secrecy capacity can be computed as shown in Eq. (1.4). In the case of

binary symmetric channels, it is strictly equal to the difference between the capacity

of the main channel and that of the wiretapper channel. Intuitively, we can see the

fundamental trade-off between reliability, which demands more redundancy to improve

error-correction performance on the legitimate side (I(X;Y )), and secrecy, which calls

for less redundancy in order to limit the eavesdropper’s decoding capabilities (I(X;Z))

[18].

CDWTC
s = max

pX
(I(X;Y )− I(X;Z)) (1.4)

In the following years, several other channel models for the study of the secrecy capacity

have been proposed. These include the following models:5

• the broadcast channel with confidential messages [21], in which the wiretap channel

is not a degraded version of the main channel (Figure 1.3). In this case, the

question of the quality of the main and wiretap channels arises. For example,

when the wiretap channel is noisier than the main channel, the secrecy capacity is

the same as for the degraded WTC.

• the Gaussian wiretap channel [22], which is a degraded WTC in which the main

and wiretap channels alter the input signal by adding white Gaussian noise. The

secrecy capacity is a function of the SNR of the main channel (γm) and of the

wiretap channel (γw) as shown in Eq. (1.5). So, if γm ≤ γw the secrecy capacity

is 0.

CGWTC
s =

1

2
log(1 + γm)− 1

2
log(1 + γw) (1.5)

• the fading wiretap channel [23], for which the authors show that the secrecy rate

can be positive even when eavesdropper has a higher average SNR than the legiti-

mate receiver, given that the transmitter knows only the instantaneous CSI of the

main channel. This is possible because of the different instantaneous realizations

5A more detailed review of these channel models and others can be found in [19] and [20].
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of the fading coefficients on the main and wiretap channels, guaranteeing a non-

zero probability to have a higher instantaneous SNR on the main channel. This

secrecy capacity can also be used to share a symmetric key that can be later used

for encryption [24].

Secrecy-achieving strategies. The secrecy capacity expressions are generally proved

using the random-coding argument, a method that does not provide explicit code con-

struction because it relies on averaging over all messages in all possible codebooks.

Wiretap code design is also challenging because their performance cannot be measured

by an objective metric like the BER in the case of error correction codes [18]. For ex-

ample, LDPC, polar, and lattice codes can be used for building wiretap codes for binary

erasure channels [18], binary symmetric channels, and Gaussian channels, respectively.

It can be observed that secrecy can be achieved when the legitimate users have a so-

called “advantage”, which can be designed as a coding advantage, a signal processing

advantage or both. Although wiretap codes are hard to construct, a generic code struc-

ture that guarantees both secrecy and reliability can be inferred: each message should be

mapped to a pool of codewords, from which the transmitter randomly draws the trans-

mitted codeword in order to confuse the eavesdropper (i.e., a binning structure [18]).

A signal processing advantage can be designed by employing multiple antennas, beam-

forming or jamming [20]. The signal processing only approach cannot be translated in

an information-theoretic weak/strong secrecy conditions but simplifies the system design

[20].

In order to illustrate how secrecy could be possible over a noisy channel without any

encryption mechanism, consider a degraded AWGN wiretap channel.6 According to

the definition, the degraded wiretap channel [Alice-Eve] has lower SNR than the main

channel [Alice-Bob]. Consequently, for a given binary constellation employed by Alice

and Bob, the BER for the main channel is lower than the BER for the wiretap channel.

Consider that the difference is large enough so that after decoding of the repeated

symbols sent by Alice, Bob is able to identify an unique symbol, while Eve can only

6The following example is just for intuition purposes. It does not achieve strong secrecy.
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see a cloud of points all over the constellation, which would make her unable to decode

the sent symbol. This is one of the simplest examples of exploiting a physical layer

advantage to securely transmit information between two parties. Despite the inherent

existence of the advantage in this scheme, the choice of the constellation by Alice and

Bob depends on the knowledge they have about the state of the wiretap channel, which,

along with code design, is one of the main challenges in the field of physical layer secrecy.

Usually, physical layer secrecy studies consider either complete or partial knowledge of

CSI or no knowledge at all [20].

Next, we will briefly describe the second approach in physical layer security, i.e., secret

key agreement, which stems from exploiting or creating the same kind of advantage

while using an authenticated noiseless public channel.

Secret key agreement

The second approach for providing information-theoretic security using the physical

layer is to generate secret keys from communication channels and use them as one-time

pads. The legitimate users employ the noisy communication channel to generate cor-

related (i.e., reciprocal) observations and a noiseless public feedback channel to correct

the mismatches and obtain a secure key. Consequently, the secrecy and reliability re-

quirements can be treated separately, making secret key agreement strategies simpler to

implement than wiretap code design [18]. The public channel is commonly assumed to be

bidirectional, authenticated and rate-unlimited. In wireless communications, correlated

observations can be obtained in two main ways.7

• Two-way channel probing: owing to the reciprocal nature of electromagnetic wave

propagation, physical layer measurements are a common source of information for

two legitimate users and can be therefore processed in order to obtain common bits.

Ideally, the two users share an inherent advantage over any possible eavesdropper

situated at more than a few wavelengths of any of them because the eavesdropper’s

radio channel is uncorrelated to the main direct and reverse channels. This is

a possible instantiation of the “source model” for secret key agreement and it

represents the approach taken in this thesis.

• One-way transmissions over the wireless channel: the observed outputs at the

receiver and eavesdropper correspond to the outputs of a classical wiretap chan-

nel. Therefore, the so-called “channel model” for key agreement can be seen as a

wiretap channel reinforced by a public channel, but with a different purpose (i.e.,

7A more detailed view of secret key agreement models is given in Section 1.2.1.
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generate a secret key for encryption purposes at higher levels instead of obtaining

secrecy directly at the physical layer) [18].

Conclusion

In this section, we have briefly described how the physical communication channel can

be used either for keyless secure communication or for secret key agreement. These

notions are intrinsically linked to information-theoretic security, which does not place

any computational restrictions on the eavesdropper. In order to get close to or achieve

information-theoretic security, systems should use suitably long wiretap codes or utilize

the generated secret keys as one-time pads. Meanwhile, even though the key rate might

not be large enough for one-time padding, generating a shared secret key on the fly

between two devices is a promising alternative for symmetric key distribution, especially

in the context of decentralized networks. Moreover, physical layer security does not

require additional equipment than that already employed for communication [18].

Nevertheless, physical layer security is also facing several challenges [25]. First of all,

compared to cryptographic approaches, most physical layer studies consider only passive

attackers (at both physical and applicative layers) with few observations and the same

type of communication equipment as the legitimate users. Then, a set of assumptions on

the wireless channel are necessary for some physical security schemes: i) total or partial

knowledge of the eavesdropper’s channel state for secure keyless communications; ii) reci-

procity of the bidirectional communications and in the same time temporal decorrelation

of the channels for continuous key generation; iii) spatial decorrelation or difficulty of

prediction of the wireless channel by the attacker.8 Finally, information-theoretic chan-

nel models or suggested signaling (e.g., Gaussian signaling instead of practical QAM)

might not always be realistic.

Several of these issues have already been or start to be addressed. For example, in the

case of key agreement, secret key generation under active attacks has recently been con-

sidered in practical key generation schemes [26]. Several experimental studies in various

conditions and with various radio technologies confirm the approximate reciprocity of

communication channels ([27], [28], [29]) or propose methods to post-process measure-

ments for improving it [30]. Also, attackers with powerful ray-tracing software cannot

gain sufficient information about the legitimate signals in rich scattering environments,

as shown in [31].

8This particular assumption could be questioned if powerful ray-tracing tools and the necessary
knowledge about the environmental conditions are available to the attacker.
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Physical layer security can be extended to include authentication schemes based on the

uniqueness of the channel between the legitimate users [25] or on location- and device-

dependent features.9 While the first two physical layer security components dealing with

confidentiality are situated at the crossroads of information theory and signal processing,

the latter consists in signal processing techniques for linking the identity of a device

with its wide-sense physical context (e.g., radio channel, absolute positions, relative

connectivity).

To conclude with, as already suggested by the need of prior authentication of the public

channel, physical layer security solutions are not meant to be a replacement for cryp-

tographic solutions, but rather a complementary solution in order to enforce security,

especially in emerging networks with decentralized architecture or limited computational

capabilities.

1.2 Physical layer secret key agreement

The present section focuses on the main contributions in the state of the art of phys-

ical layer secret key agreement. Firstly, the seminal papers from 1993 introducing the

information-theoretic secret key agreement from common randomness and the two stan-

dard key generation models are presented, followed by the description of the sequential

key distillation procedure for the source model. The link between the information-

theoretic models and the wireless fading channel is also discussed, which leads to a

classification of the identified key generation approaches. Finally, we outline various

channel characteristics or configurations usually employed for key generation with wire-

less channels.

1.2.1 Source and channel models

In the field of information theory, two main papers [32] [33] provide the transition from

secrecy capacity studies, initiated by the introduction of the wiretap channel model,

towards the notion of secret key capacity. The contributions of these studies are sum-

marized below.

Firstly introduced as the secrecy capacity of broadcast channels with public discussion

[32] (or equivalently, the channel model capacity [33]), the secret key capacity is then

defined in the context of a broader model (or equivalently, the source model [33]). In

9Studies regarding the generation of location- and device-dependent pseudonyms have been accom-
plished in parallel of the present thesis and are reported in Appendix E.
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Figure 1.5: Secret key agreement channel model

parallel, Ahlswede and Csiszàr [33] shows similar results on the secret key capacity of

the so-called source model and channel model with or without wiretapper/eavesdropper.

To summarize, the source model (Figure 1.4) assumes the existence of a discrete memo-

ryless source (DMS) defined by pXY Z with components (Xn, Y n, Zn) observed by Alice,

Bob, and Eve respectively. In the channel model (Figure 1.5), Alice sends a random

sequence Xn over a discrete memoryless channel (DMC) defined by pY Z|X and Bob

and Eve observe the outputs Y n and Zn. Indeed, the broadcast or wiretap channel

(characterized by pY Z|X) is a particular case of common information (characterized by

pXY Z = pY Z|XpX) when Alice chooses pX and generates n i.i.d. realizations accord-

ing to pX . Both models include a two-way authenticated public channel with no rate

limitation, unless stated otherwise.
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The secret key capacity (S(X;Y ||Z)) represents the maximum achievable rate at which

Alice and Bob can generate a key out of their observations Xn and Y n, while keeping

Eve’s key information rate from her observation Zn and public messages (φA, φB) ar-

bitrarily small. Given a space of keys K, a secret key rate R is achievable if for every

e > 0 and sufficiently large n, there exists a secret sharing strategy such that [33]:

H(KA) > R− e (key rate)

P(KA 6= KB) < e (reliability)
1
nI(KA;Zn, φA, φB) < e (secrecy)
1
nH(KA) > 1

n log|K| − e (key uniformity)

(1.6)

Maurer [32] derives upper and lower bounds for the secret key capacity of the source

model in the case of independent repeated realizations of each random variable X, Y ,

and Z (Eq. (1.7)-(1.8)). Finally, it is shown that for a particular case of joint probability

distribution pXY Z (i.e., when the three parties receive a binary symmetric source over

independent binary symmetric channels), secret key agreement is possible even when the

eavesdropper’s observations are on average less noisy than the legitimate observations.

This is rather counter-intuitive given the results on secrecy capacity but nonetheless

possible because of the public channel, which the legitimate parties can use to create

an advantage. Later, Maurer and Wolf [34] finds a tighter upper bound for the secret

key rate of the source model by introducing the notion of “intrinsic conditional mutual

information”.

S(X;Y ||Z) ≥ max(I(Y ;X)− I(Z;X), I(X;Y )− I(Z;Y )) (1.7)

S(X;Y ||Z) ≤ min(I(X;Y ), I(X;Y |Z)) (1.8)

Ahlswede and Csiszàr [33] discusses the secret key capacities for the source and channel

models without and with a wiretapper. If no wiretapper is present, the secret key capac-

ity for the source model (i.e., I(X,Y )) can be obtained with one-way public discussion,

whereas the secret key capacity for the channel model (i.e., the capacity of the DMC)

is achievable with no public channel. Then, the paper presents closed single-letter char-

acterizations for the source and channel key capacities with forward (i.e., from Alice

to Bob) public discussion. Lastly, it is outlined that the knowledge of the wiretapper’s

observations by one of the terminals can improve the secret key capacity.

Both studies point out the link between the source and the channel models: to a given

DMC(pY Z|X), one can associate several DMS(pXY Z = pY Z|X · pX) by varying pX (or

equivalently, a DMC can be viewed as a DMS in which one of the parties, namely the

transmitter, can control the source). It can be inferred that the key capacity of the
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channel model is larger or equal to the supremum of the key capacities of the associated

source models [33]. This link between the two information-theoretic models leads to sev-

eral inquiries. What is the equivalent of these models in wireless physical layer security

and what is the link between the corresponding source and channel models? Are there

other more “practical” models for secret key generation exploiting the randomness of

the wireless fading channel? Before classifying key generation models exploiting wire-

less channels, the next section presents the sequential key distillation procedure for the

general source model.

1.2.2 Sequential key distillation for the source model

It has been shown that, unlike for the wiretap channel, the reliability and secrecy re-

quirements for the source model can be implemented independently as a succession of

several phases [18].

Randomness sharing. This first step corresponds to the observation of n random real-

izations of the source by Alice, Bob, and Eve.

Advantage distillation. In the unfortunate case in which Alice and Bob share less infor-

mation than Alice and Eve for example (I(X;Y ) ≤ I(X;Z)), a public discussion phase

is needed in order for Alice and Bob to obtain an advantage (e.g., by keeping only a

subset of the realizations). Note that this step implies that Alice and Bob have some

information about the statistics of Eve’s realizations.

Information reconciliation. Even though Alice and Bob share an advantage with respect

to Eve, they can still have differences in their observations. In order to correct them,

Alice publicly sends partial information about her sequence to Bob, who uses it to

correct the mismatches (i.e., one-way public discussion). Bob can also reply but in this

case, the protocol is more difficult to analyze. The reconciliation information, which can

be directly observed and employed by Eve, should be kept as small as possible. This

step is theoretically equivalent to a source coding problem with side information: given

the side information Y , the amount of information that Bob needs to recover Alice’s

observation X is H(X|Y ). Since H(X|Y ) = H(X)− I(X;Y ), it is obvious that the more

mutual information Alice and Bob have, the less information they need for reconciliation.

Similarly to advantage distillation, Alice should preferably have statistical information

about the number of mismatches between her sequence and Bob’s in order to compute

the needed reconciliation rate.

Privacy amplification. Since Eve’s information about the shared advantage of Alice and

Bob increases because of the information reconciliation step, the latter have to apply
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supplementary operations to their sequences (considered equal at this point). This can

be a deterministic function (e.g., a hash function or a randomness extractor), whose

role is to generate a uniformly distributed sequence. The result will be shorter but

more secure (i.e., Eve will have negligible information about it). The present step also

removes any correlation that might exist between consecutive observations, which is also

an advantage for Eve.

Quantum key distribution. One of the early illustrations of the mentioned sequen-

tial procedure is QKD based on the laws of quantum physics [35] and implemented using

single photons (or light pulses in practical scenarios), whose linear or circular polarities

encode the key bits. For example, “1” can be encoded either as a vertically polarized

photon or as a right-circularly polarized one. The linear and circular bases are conju-

gate bases: measuring the polarization in one of them randomizes the polarization in the

other one (i.e., Heisenberg’s uncertainty principle). This quantum phenomenon allows

the legitimate users to statistically detect an eavesdropper having measured the same

photons using a different basis than the one used by the legitimate users (e.g., the BB84

protocol [16]).

Several QKD protocols based on different quantum phenomena have been developed

[36] (BB84 and its variants, continuous-variable QKD, entanglement-based protocols,

etc.). In order to illustrate the sequential distillation procedure, we briefly describe the

BB84 protocol [16]. One may argue that the latter does not follow the source model

but rather a channel model. However, given the particular physical properties of light

transmissions, the sequential procedure can be applied as follows.

Randomness sharing. Alice sends a random sequence of bits, each one modulated in

a randomly chosen basis. Bob measures the polarization of the received photons also

in a randomly chosen basis and then, only keeps the bits measured with the correctly

guessed bases. The two can also estimate the leaked information to an eavesdropper

after a public discussion.

Information reconciliation. In order to find and correct possible errors, a block parity

check algorithm is proposed, followed by a repeated parity check on randomly chosen

subsets of bits. When an error is detected in a block, iterative parity check per sub-block

is performed until the error is corrected.

Privacy amplification. In order to prevent information leakage from the public channel,

for each parity bit disclosed on the public channel, Alice and Bob drop the last bit of

the corresponding sequence. Furthermore, the leaked information during randomness
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sharing is suppressed by applying a hash function parameterized by the number of final

bits, the estimate of the leaked information, and the desired level of security.

The aforementioned protocol has been proved to be perfectly secure under certain as-

sumptions regarding its implementation, the equipment (photon sources, polarizers,

beamsplitters, photon detectors) and the reliability of the quantum transmissions [35].

Commercial systems with dual key agreement (quantum and classical) are already avail-

able and current research in the QKD field focuses on subjects such as equipment im-

perfections that have not been yet considered in the proofs, undiscovered vulnerabilities,

quantum key distribution networks, etc.10

Practical sequential key generation

In practical wireless scenarios, the classical key generation steps are [26]: channel probing

and randomness extraction (e.g., measuring RSSI and extracting the small scale fading),

quantization (conversion of real or complex values to bits), information reconciliation

and privacy amplification. We can map the first three steps to the aforementioned

“randomness sharing” phase.

In some cases, an additional public discussion phase before error correction is necessary,

for example, if the measured sequences are not synchronized. In our studies, we will

consider that the information reconciliation phase consists of: i) a preliminary public

discussion for inducing coherence between Alices’s and Bob’s measurements (e.g., syn-

chronization) ; ii) a conventional error correction scheme. Note that the former can be

designed together with the quantization algorithm or separately.

1.2.3 Key generation models with wireless channels

Wireless channels are typically characterized by three main phenomena that affect trans-

missions: path-loss, shadowing and small-scale fading. Physical layer security is predom-

inantly interested in the random time-varying component of the wireless channel, either

in the form of small-scale fading in narrow-band systems or multipath components in

UWB systems. In the following, we will refer to the “wireless channel” from a key

generation perspective.

We identify several key generation models employing the wireless channel based on

the aforementioned source and channel models. Essentially, the channel model consists

10For more details on QKD advantages and challenges one can refer to the SECOQC White Paper
on Quantum Key Distribution and Cryptography and to The black paper of quantum cryptography: real
implementation problems [36].
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in transmission strategies that use the wireless channel as a medium in order to convey

secret information, whereas the source model considers the wireless channel as a random

source of information and not as a transmission support.

• Source model. This approach relies on the reciprocity and spatial decorrelation

properties, which offer an inherent advantage to the legitimate users with respect

to the eavesdropper. The legitimate users have correlated observations of the

common source, the wireless fading channel, while an eavesdropper, located at a

certain minimum distance of the legitimate users, has considerably lower chances

of obtaining correlated observations. This key generation approach involves bidi-

rectional training or channel probing and the phases described in Section 1.2.2.

The majority of practical secret key generation algorithms presented in Section

1.2.4 fall under this category.

• Extended source model. The sender-excited model is a generalization of the source

model with optimized probing signals [37]. In scenarios with long channel coher-

ence times, the bidirectional entropy harvesting source model is not efficient. A

possible solution would be the virtual channel approach where one of the parties

induces controlled channel variations during the channel coherence time by using

e.g., two antennas [38].

• Wiretap channel model. The channel model for key agreement can be implemented

through classical wiretap coding strategies without a public channel and with

various levels of channel state knowledge, as investigated in [39] (e.g., full main

and wiretap CSI at the transmitter, main CSI only at the transmitter, main CSI

only at the receiver). Usually, these strategies are not optimal because they do

not make use of the public channel.

If a public channel is also available, equiprobable dense parity codes can be em-

ployed to securely share a secret key in the case of a binary symmetric wiretap

channel [40]. The key is distilled from the encoded sequences that are correctly

received. The employed codes guarantee both a lower bound on the probability of

detecting correctly received symbols and a lower bound on the equivocation rate,

ensuring thus information theoretic security.

• Source-emulation channel model. An alternative implementation of the channel

model for key agreement is the source-emulation: Alice generates a discrete mem-

oryless source and sends it over the wireless channel in order to yield correlated

observations for Bob. The final key is obtained by information reconciliation and

privacy amplification like in the source model. Secret key capacities for Rayleigh
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fading channels with unknown CSI but known CSI statistics has been investigated

in [41].

Based on the observations that fading is beneficial to secrecy capacity [23], practical

secret sharing schemes [24] can be designed for AWGN Rayleigh fading channels

when instantaneous CSI is available (i.e., complete main channel CSI and com-

plete/partial wiretap CSI at the legitimate users and wiretap CSI at the eaves-

dropper). The proposed protocol consists in a one-way transmission of a random

sequence during the time slots when the secrecy capacity is positive, followed by

error correction by LDPC codes and privacy amplification with universal hash

functions.

• Mixed models. Recent studies also consider mixed training-transmission key gen-

eration strategies with an initial phase of channel probing (i.e., source model)

followed by a transmission phase using: i) wiretap coding with receiver CSI only

[42]; ii) a source-emulation strategy based on the channel estimates from the first

phase [43]. Secret keys are generated from both phases. In both cases, the results

indicate that when the channel coherence time is long, the contribution from the

source model vanishes and the channel model should be used to achieve high key

rates.

• Reciprocity-based channel model.11 Because the source model is highly dependent

on the coherence time, static channels would not be adapted for key generation

within the practical source model approach. Alternative schemes combining re-

ciprocity/spatial decorrelation and user-generated randomness have been proposed

[44] [45] [46]. For example in [45], Alice and Bob generate random phases φA and

φB, respectively, and use them to modulate their transmitted signals. If both

of them transmit the modulated signals during a period shorter than the chan-

nel coherence time, they will be able to obtain a secret key by quantizing the

shared information φA + φB + φc, where φc is the phase induced by the reciprocal

bidirectional channel. Keys can also be generated from unilateral user-generated

randomness if the channel effect is mitigated by inversion operations (e.g., conju-

gation [46]).

• Alternative model: unknown deterministic sources [47]. Recently, key generation

has also been studied from a different perspective that combines the information-

theoretic concept of “mutual information” with the notion of “unknown deter-

ministic parameters” from detection and estimation theory. Let Alice and Bob

observe a noisy deterministic quantity x. Alice “enciphers” a secret message W

11We note that this denomination is not part of the established terminology in the key generation
state of the art.



Chapter 1. Introduction 24

with her quantized observation xqA as We = f(W,xqA), where f is a deterministic

function. Then, she sends We to Bob, who “deciphers” the intended message W

using We and his quantized observation of the source xqB. The result is a new

framework that can characterize the secret key rate, perceived as a secure com-

munication rate achievable with secure mapping functions parametrized by the

quantized observations of the source.

Secret key agreement with an active attacker (i.e., using a non-authenticated public

channel) can be studied under various assumptions. If the attacker completely blocks

the communication during the attack slots, the success of the key agreement depends

on the joint initial distribution of the source pXY Z and the suggested protocol consists

in secret key agreement during the secure slots [48]-[49]. In the case of wireless fading

channels, it is not possible to completely block the communication but it is commonly

assumed that the attack is continuous. This scenario is examined in the context of

a mixed source-channel model for fading channels and positive secret key capacity is

shown to be possible [50].

Finally, we also note that secret key generation is not limited to wireless communications

and can be also achieved, for example, in networked linear control systems (e.g., sensors

and controllers) by exploiting common system state information modifiable by controllers

[51].

1.2.4 Wireless channel characteristics for key generation

Key generation methods can be also classified based on the employed channel character-

istics (e.g., phase, channel impulse response, magnitude) and their variation over various

domains (e.g., time, frequency, space) [52]. Measurements are usually performed on ab-

solute or relative scales and their variation is either inherent (i.e., the source model)

or user-induced (i.e., the reciprocity-based channel model or intentional variation of

transmission parameters such as antenna configurations).

In this taxonomy, we only focus on the source model with a few exceptions of references

indexed by u, which represent scenarios of user-induced randomness. A review of some

of the key generation methods involving received signal strength or phase information

can be found in [53].

• Phase. Although it can be challenging to achieve coarse frequency synchronization,

quantization of phase information has been investigated for both narrow-band [54]

[55]u [45]u and wide-band channels [44]u [56] [46]u.
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• Received Signal Strength (RSS). RSS is a popular channel characteristic for bit

extraction because of its wide availability in wireless devices [57] [58]u [59] [60] [27].

Subsequent studies on RSS concern key generation implementation for a network

of mobile nodes and static anchors [61] or WBAN [62]. The trade-off between

bit generation and resource consumption during channel probing is investigated in

[63]. Despite the simple acquisition process, RSS is considered a low-entropy fea-

ture and key generation from RSS measurements usually requires highly dynamic

environments to achieve large key lengths.

• Narrow-band CIR. The possibility of employing narrow-band CIR for key gener-

ation is investigated in comparison to RSS [60] or as a function of the sampling

frequency and the channel coherence time [64] [65].

• Multiple channels. An example is to measure RSS over multiple frequency-selective

channels [66]. OFDM-like channels have also proved to be a popular key extraction

feature in comparison to RSS measurements [67], narrow-band coefficients [68] or

when combined with: i) uncorrelated feature extraction [69]; ii) delay mitigation

and mobility bias correction [70]; iii) user-generated randomness [46]u. Experimen-

tal key generation from MIMO narrow-band RSS measurements is investigated in

[71]. Regarding MIMO theoretical key generation rates, various limiting factors

have been analyzed: measurement/estimation noise, spatial correlation between

the legitimate and illegitimate channel [72] [73], and time correlation of the legit-

imate channel [73]. Moreover, key generation using beamformed multi-antennas

can attain higher secret rates when the nodes have statistical knowledge about the

MIMO channel [74].

• IR-UWB CIR. The delays and amplitudes of multipath components present in

the IR-UWB CIR (see Section 1.3) represent an interesting source of information

for symmetric key generation. After the first proof of concept for key generation

using relative excess delays of the IR-UWB CIR [75], the same characteristic has

been recently employed for IR-UWB key generation with channel probing consid-

erations [76]. The upper-bound for the achievable secret key rates from CIR has

been derived [77] [78]. Several experimental studies with metrological equipment

confirm the reciprocity and spatial decorrelation properties of IR-UWB channels

[29] [28] and investigate the properties of the generated keys [79] [28] [80]. Because

of the temporal correlation of CIRs in typical indoor environments, generated keys

can be highly predictable when perfect knowledge of the past channel realizations

is available to an attacker [81]. The proposed solution [81] is to employ linear

prediction in order to remove the predictable samples.
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Other less conventional key extraction algorithms exploit characteristics such as relative

node distance [82] or angle of arrival [83], special equipment like reconfigurable antennas

[84]u, jamming mechanisms [85], or multi-hop networks [86]. Moreover, recent stud-

ies investigate the negative impact of information leakage from antenna reflections at

relatively high SNR values [87].

Although the main aim of a physical layer secret key generation procedure is symmetric

key distribution, one can consider exploiting such schemes for security measures such as

joint encryption-turbo coding [88].

1.3 Impulse Radio - Ultra Wideband

Although invented at the beginning of the 20th by G. Marconi and employed in radar

technology since the 1960’s, UWB communications have gained increased popularity in

the last decade [89]. According to the regulation defined by the US Federal Communica-

tions Commission (FCC) in 2002, UWB refers to all the emissions with a power spectral

density lower than -41.3 dBm and with a bandwidth larger than 500 MHz or larger than

20% of the central frequency. This regulation was intended to define secondary usages

of the 3.1 - 10.6 GHz band, which explains the low transmission levels corresponding

to non-intentional emissions of electronic devices. European regulation defines a low

band (3.4-4.8 GHz) and a high band (6-8.5 GHz) for UWB transmissions and imposes

the implementation of additional mechanisms in order to protect the coexisting services:

Detect And Avoid mainly for high data rate UWB transmissions and Low Duty Cycle

aimed at limiting the emission time of low data rate UWB transmissions (e.g., to around

3%) [90].

Today, there are two approaches for UWB communications: the multi-band UWB based

on OFDM for high data rate at short transmission ranges and the Impulse Radio UWB

consisting in the transmission of short low duty cycle impulses of the order of a few

nanoseconds. Because of its temporal characteristics, IR-UWB exhibits high temporal

resolution capabilities, which makes it suitable for radio localization applications in-

volving ranging through precise detection of the Time of Arrival (ToA) of transmitted

packets. Moreover, because of the low duty cycle transmissions, IR-UWB is adapted to

energy-efficient devices as well.

IR-UWB standardization

Two main IR-UWB standards have been proposed [90]:
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• IEEE 802.15.4a for joint low data rate communications and peer-to-peer ranging.

The IR-UWB technology, which is capable of achieving low data rates (from 100

kbit/s to 26 Mbit/s) over medium to long distances, has been the natural choice

for the physical layer.

• IEEE 802.15.6 for high data rate solutions over short-distance communications in

body area networks. The retained physical layer is based on a modified version

of the initial 800.15.4a physical layer in order to integrate the particular topology

and variable data rates of these networks.

IR-UWB signal

An IR-UWB signal consists in a repetition of pulses with a mean Pulse Repetition

Period (PRP) and possibly scrambled by a Time Hopping code in order to smooth the

corresponding spectrum. Popular pulse shapes are the Gaussian pulse, the Gaussian

monocycle (the first derivative of the Gaussian pulse) and the second derivative of the

Gaussian pulse. This is due to the optimal time-bandwidth product of Gaussian pulses

(i.e., B = 2/τ where B is the bandwidth and τ is the useful temporal support of the pulse

[90]), which achieves maximal time-rate resolution, but also to the facility of generating

Gaussian pulses at the antenna level [89].

Classical modulation schemes include (Differential) Binary Phase Shift Keying (D)BPSK,

Pulse-Position Modulation PPM (i.e., the temporal position of the pulse indicates the

modulated information), On-Off Keying OOK (i.e., modulation by the presence or the

absence of the signal) or Transmitted Reference TR (i.e., the information is modulated

by the difference between a reference pulse and a secondary one). In the IEEE 802.15.4a

standard, a combination of BPSK and/or PPM is considered for flexible modulation

(i.e., depending on coherent/non-coherent Rx implementations) and a cascade of an RS

encoder and a convolutional encoder is added for channel coding purposes.

IR-UWB channel model

The IEEE 802.15.4a statistical channel models for various type of environments (e.g.,

office, residential, outdoor, industrial, etc.) and two frequency regimes (above 3 GHz

and below 1 GHz) [91] are based on a modified version of the Saleh-Valenzuela (S-V)

indoor channel model developed in 1987 using measurements with 10 ns pulses [89]. The

S-V small-scale fading model assumes that arrival times of multipath components are

Poisson-distributed within clusters, which also follow a Poisson distribution. The CIR
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can be expressed as:

h(t) =

∞∑
l=1

∞∑
k=1

xl,ke
jφl,kδ(t− Tl − τl,k) (1.9)

where Tl is the arrival time of the l-th cluster, τl,k, xl,k, and φl,k are the multipath arrival

time, amplitude, and phase of the k-th multipath within the l-th cluster. The phases

φl,k are uniformly distributed in [0, 2π] and the amplitudes xl,k are Rayleigh random

variables with an exponentially decaying power profile (E[x2
l,k] = E[x2

1,1]eTl/Γeτl,k/γ with

Γ and γ the cluster and multipath decaying rates).

The standardized proposal [91] includes several modifications of the S-V model: i) the

number of clusters is considered a Poisson random variable; ii) the multipath arrival

times are modeled as a mixture of two Poisson processes and the cluster decaying rate

Γ as a function of Tl; iii) the small-scale fading amplitudes |xl,k| follow a m-Nakagami

distribution. Also, the IEEE 802.15.4a standard modifies the clustering model depending

on the considered environment, includes a frequency-dependent term in the path gain

model and proposes a new model for correlated shadowing for WBAN. In the following,

we will consider this model for the performance evaluation and benchmark of some of

our proposals.

Another approach to channel modeling can be achieved by deterministic propagation

simulators, like ray-tracing tools that capture the dependency of the received signal

with respect to Tx-Rx positions and to the environment. In Chapter 3, we will employ

data generated with an IR-UWB ray-tracing tool [92] in order to investigate the effect

of the spatial correlation of IR-UWB signals on an existing key generation protocol.

IR-UWB receivers

At the receiver, the high sampling rates imposed by the high signal frequencies and large

bandwidth can be prohibitive given the consumption requirements for integrated devices.

This poses challenges in terms of synchronization/timing acquisition, demodulation and

channel estimation, which are usually designed to match a target level of performance

depending on the application [90]. Generally, IR-UWB receiver architectures can be [89]

[90]:

• Coherent. For example, coherent Rake receivers require a priori synchronization

and channel estimation in order to separately process every received pulse and

combine the results provided by the multipath diversity before making a demod-

ulation decision.



Chapter 1. Introduction 29

• Semi-coherent. A system employing DPBSK or TR modulations can integrate a

semi-coherent receiver, which demands only intra-symbol synchronization, i.e., the

detection of the time of arrival of the first multipath component.

• Non-coherent. Energy detectors [93] and mixed architectures [94] can simplify a

lot the receiver design. According to ED architectures (e.g., for n-PPM, OOK

modulations), the energy of the received signal is integrated in small bins whose

width is approximately equivalent to the unitary pulse duration, thus relaxing the

traditional constraints on synchronization precision, relative clock drifts between

Tx and Rx, and sampling rate, which becomes a function of the bin integration

duration for non-overlapping bins [93]. In the case of semi-coherent DBPSK mod-

ulations, a prior stage of coherent integration of one-bit quantized signals can be

added for SNR improvements [94].

Herein, we are solely interested in the channel estimation phase, irrespective of any

modulation-related questions. A more detailed state of the art on channel estimators is

provided in Section 2.4.1.

1.4 Motivations and contributions of the thesis

The present thesis explores several aspects of the secret key generation procedure involv-

ing the source model, which can be practically implemented with sequential methods

(Section 1.2.2). Compared to the source emulation model, which can also be designed

according to a sequential approach, the source model does not rely on a temporary or

engineered advantage for achieving key sharing. On the contrary, the reciprocity and

spatial decorrelation of radio signals are inherent characteristics of radio transmissions

and the channel estimation phase is already employed for communication purposes in

some systems. This means that the source model is relatively simpler to implement than

the other key generation models. However, it is dependent on channel variability, which

should be slow enough to allow bidirectional channel probing and fast enough in order

to achieve an acceptable key generation rate. The study of channel variability is out of

the scope of this work, which focuses on the exploitation of single channel realizations

and assumes that the channel is sufficiently slow in order to fulfill the channel probing

constraints.

Because of its rich multipath resolution capabilities and favored by its increasing popu-

larity for localization-aware applications and potentially in various kinds of decentralized

emerging networks (e.g., WSN, WPAN etc.), the IR-UWB physical layer has been cho-

sen for our investigations. It will be therefore used for both single links and cooperative
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scenarios (i.e., in mesh networks). We focus on the first part of the sequential key gener-

ation chain (i.e., the gray-highlighted steps in Figure 1.6), prior to error-correction and

privacy amplification, because of its close links to signal processing techniques.

Channel probing &  
Randomness extraction

Privacy amplification

Error correction

Quantization

Preliminary  
reconciliation

Randomness 
sharing

Information
reconciliation

Figure 1.6: Key generation steps within the source model (with concerned steps
highlighted in gray)

Although joint design of, e.g., quantization and information reconciliation procedures

could be a promising research direction, we choose to study them separately12 because

of: i) the simplicity of the approach; ii) the need to initially understand the specific

structure and information that can be extracted from IR-UWB signals in single-link

and cooperative contexts. Unlike RSS measurements, IR-UWB signals have a special

vectorial structure with amplitude and temporal components (i.e., the attenuation and

arrival time of multipath components) and the probing phase has an impact on the key

generation performance depending on its parameters (e.g., sampling rate, estimation

algorithm, etc.). Moreover, all the available physical layer characteristics should be ex-

ploited in order to obtain physical layer security solutions with a high potential of device

integration. In the case of mobile IR-UWB devices, high-precision ranging provides a

valuable source of reciprocal information even though the entropy of such measurements

is lower than that of the CIRs. We also try to understand how far the original “phys-

ical layer” concept can be extended in the case of cooperative key generation without

recurring to higher layer key distribution protocols, which may involve numerous packet

exchanges.

This thesis provides guidelines concerning the aforementioned research axis. We start

from existing IR-UWB key generation studies [95] [29] [79] [96], which include a key

12The obtained bit sequences will sometimes be called “keys” without any implication on their sym-
metric character.
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generation protocol for directly sampled CIRs [79]. Regarding this signal model, we

propose two extensions of the mentioned protocol: the first one improves the random

character of the generated keys by a diversified bit encoding procedure [97] (Section 2.2)

and the second one increases the immunity to eavesdropping by limiting or masking the

public exchanges required for information reconciliation [98] (Chapter 3).

Then, we pursue our investigations in the context of synthetic channel estimates based

on the IEEE 802.15.4a model in order to understand the impact of quantization on

the reciprocity-randomness trade-off [99] (Section 2.3). In this context, we introduce

the notions of “inter-key” and “intra-key diversity” to characterize randomness, show

how to adapt the quantization thresholds in order to achieve a certain trade-off between

reciprocity and inter-key diversity, and propose a scheme that favors intra-key diversity.

Moreover, we extend the signal model to realistic channel estimates issued from various

types of estimators (Section 2.4), some of which are designed to lower the prohibitive

sampling rates that are usually needed for channel estimation. We examine the degra-

dations in reciprocity incurred by these estimators and we propose a post-processing

phase of the channel estimates that improves the reciprocity.

Finally, we develop a new signal-based method that extends the point-to-point source

model to cooperative contexts with several nodes intending to establish a group key

through the optimization of the channel probing signals [100] (Chapter 4). In this last

chapter, the focus lies on the reciprocity at the signal level and on the design of the

probing signals, which explains the simplistic ED-like approach that has been chosen for

the quantization metric and the key performance evaluation.

Despite the fact that we employ the IR-UWB technology for all our simulations, the

findings of Chapters 3 and 4 can be extended to other wireless technologies. Furthermore,

our methods are not targeted or restricted to low-complexity networks such as WSN,

but are rather general. On the one hand, in Section 2.4 we provide guidelines for

quantizing channel estimations obtained with sub-Nyquist sampling. On the other hand,

the cooperative key generation method developed in Chapter 4 requires terminals with

evolved computational capabilities, such as multi-standard smartphones.

Each of the three main chapters also includes a review of related state of the art work

and the concerned signal and system model.13 The present document is concluded

with a summary of the contributions and their limitations in Chapter 5 followed by a

few personal thoughts about the societal impacts of information and communications

technologies (Chapter 6). Other related subjects that have been investigated in parallel

concern: i) quantization of ranging and device-dependent information for generating

13Throughout the document, the SNR is sometimes defined differently according to the context of the
study.



Chapter 1. Introduction 32

pseudonyms and provide a security overlay to conventional authentication procedures

(Appendix E); ii) quantization strategies for experimental IR-UWB channel estimates

issued from low-complexity integrated devices [94] (Appendix F).



Chapter 2

Quantization of IR-UWB signals

for secret key generation

This chapter addresses quantization issues in the context of symmetric key generation

from IR-WB channels. After discussing the philosophy of key quantization and a few

examples of algorithms (Section 2.1), we investigate several issues related to the quan-

tization step.

• The random aspect of keys generated from directly sampled IR-UWB signals (Sec-

tion 2.2): we propose a new bit encoding algorithm [97] that reduces the random-

ness defects compared to a previously proposed solution [79] [95].

• The inherent trade-off between reciprocity and randomness (Section 2.3): we in-

troduce a new metric for quantifying the randomness of the quantization process,

namely the diversity of the binary codewords. The mentioned trade-off is illus-

trated through a study on the optimization of the quantization thresholds for sim-

ulated IR-UWB channel estimates [99]. Also, a new diversity-aware quantization

scheme is proposed for the same signal model.

• The impact of realistic IR-UWB channel estimates on the reciprocity performance

of the channel estimates (Section 2.4): we evaluate three different estimators,

namely a high sampling rate estimator and two sparse ones, and propose a pairing

algorithm adapted to the obtained channel estimates in order to improve their

reciprocity.

33
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2.1 State of the art: quantization

Quantization for key generation

In the classical sense (e.g., for digital signal compression and/or reconstruction), the

term “quantization” refers to the mapping of a continuous set of values to a discrete

reproduction alphabet and its binary representation [101]. A memoryless quantizer can

be represented by its three components: i) a lossy encoder α that maps the continuous

value to an index; ii) a reproduction decoder β that maps the index to a codeword

of the reproduction alphabet (i.e., the quantized values); iii) a lossless encoder γ that

maps the index to a binary codeword. The quantization rule of an input value x is:

q(x) = β(α(x)).

The classical quantization problem is defined by the rate-distortion pair (R(α, γ), D(α, β))

from Eq. (2.1)-(2.2), which describes the trade-off between two conflicting goals : keep-

ing the rate as small as possible and the distortion likewise (i.e., representing the input

value as faithfully as possible using a minimum number of bits). We will call this scenario

“classical quantization”.

R(α, γ) = EX [len(γ(α(X)))] (2.1)

D(α, β) = EX [d(X,β(α(X)))] (2.2)

where d is a distance metric and len returns the number of bits of a binary sequence.

Classical quantizers can be classified as scalar or vector (depending on whether the

lossy encoder α operates on scalars or on vectors), fixed or variable rate (depending on

whether the reproduction decoder γ produces codewords of the same length or not), and

memoryless or with memory (if α or γ depends on the previous quantization operations).

Application of the quantization tools in the key generation context has to be adapted

to its specific definitions and goals, as shown hereafter.

Let yu = [yu1 , y
u
2 , ...y

u
K ] be K real samples issued from the channel probing/estimation

phase at user u ∈ {A,B}. We consider the samples as realizations of K continuous

independent RVs [Y u
1 , Y

u
2 , ...Y

u
K ] denoted as Y u. Further on, the term “key” (Ku) will

be used to denote the result of the quantization of yu on each side of the link.

Ku = qkey(y
u) = γ(α(yu)) (2.3)

In most of the practical key generation protocols, there is no need for the reproduc-

tion alphabet or the reproduction decoder because we are only interested in the binary

codewords. Moreover, the mapping between an eventual reproduction alphabet and the
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binary representation is a deterministic public function. Next, we choose between vari-

ous quantizer types based on the goals of the key generation procedure and the metrics

used to measure them.

First of all, an efficient quantization algorithm should be able to generate as many bits as

possible from a single channel probe (i.e., high rate). In “classical quantization”, vector

quantizers are employed to achieve a lower bit rate given a fixed distortion [101]. This

type of quantizers could be interesting from a joint quantization-reconciliation point of

view. For simplicity, we will restrict the study to scalar quantizers. This means that a

key is a concatenation of elementary codewords obtained from the quantization of the

available samples of yu :

Ku = [qkey(y
u
1 )||qkey(yu2 )||...qkey(yuK)] (2.4)

with || representing the concatenation operation. So, the length of the final key will be

the sum of the lengths of the elementary binary codewords. Also, for simplicity, we only

consider memoryless quantizers.

Secondly, a robust quantization algorithm should generate keys with good reciprocity,

meaning low distortion between the keys generated at the two extremities of the link.

The distortion in “classical quantization” implies a measure of the distance between

the continuous input value x and its reconstructed quantized version q(x). For key

quantization, the distance has to be defined on a discrete space. One option would be

the Hamming distance, which is defined for sequences of the same length.

Finally, key bits should have a random aspect, meaning, for example, that there should

be diversity in the generated codewords of a single key or intra-key (i.e., over k ∈
{1 . . .K}), but also between the generated keys or inter-key (i.e., at fixed excess delay,

over different channels). To illustrate the need of codeword diversity, we take as an

example a quantization scheme in which the codewords are long (e.g., binary alphabet

on 10 bits) and α is designed so that the first codeword is qkey(y
u
1 ) = c1 for 99% of

the input signals. The key rate is high (10 bits/codeword), the reciprocity is also high

but the scheme performs very poorly from the security point of view because the first

codeword of the key is highly predictable. Alternatively, an ideal quantizer from a

diversity point of view is one that outputs equiprobable codewords. Even after key

generation, randomness can be difficult to quantify. Studies usually use randomness

tests for pseudo-random number generators that search for randomness flaws such as bit

patterns or predictable oscillations [102].

Therefore, we identify three performance criteria for the evaluation of key quantization

algorithms, namely the length or rate, the reciprocity and the random character of keys.
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In this way, we incorporate into the quantization phase aspects related to reconciliation

(i.e., reciprocity) or privacy amplification (i.e., randomness) in order to: i) control the

desired trade-offs easier by trying to optimize only one operation; ii) eventually simplify

the following steps of reconciliation and privacy amplification.

Quantization algorithms

In theory, the secret key rate is bounded by the mutual information of the observations

of the legitimate users. In practice, quantization algorithms must be designed in order

to “extract” the mutual information of the given measurements. For example, the

mutual information between two correlated Gaussian random variables is compared to

the secret achievable key rates with an equiprobable quantizer and a classical minimum-

distortion quantizer, followed by an LDPC-based reconciliation procedure [103]. When

using minimum-distortion quantization, the computed secret key rate must be adapted

to take into account the entropy loss caused by the non-equiprobable quantization. Thus,

the two quantizers have equivalent performances [103].

Despite the existence of general quantization models (e.g., equiprobable, minimum-

distortion), quantization design depends on the type of input signal and its variations

(e.g., RSS, CIR). As described in the following, it can also be concerned with the even-

tual public information needed to be exchanged between the two legitimate parties as a

first stage of reconciliation (e.g., guard-band dropping or quantization map index [104]).

Quantization schemes usually fall into two categories: parallel quantization or asyn-

chronous quantization.1 Parallel quantization implies that samples are quantized in-

dependently by the two legitimate users according to a previously agreed upon algo-

rithm and parameters. If needed, reconciliation information is exchanged after quanti-

zation. Asynchronous quantization is inspired from reconciliation procedures based on

distributed source coding, namely source coding with side information. Accordingly,

quantization is initially performed by one user and then, relevant quantization informa-

tion is sent to the second user who can quantize his observation based on the received

information. In the present thesis, we only consider parallel quantization because of its

simple design and generality.

Parallel quantization

Several of the quantization algorithms that use RSS for bit extraction have been analyzed

in terms of entropy, secret bit rate, and bit mismatch rate [27]. According to this

1We note that the denominations “parallel” or “asynchronous” as defined herein are not established
terminology in the key generation state of the art.
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study, the RSS quantizers fall into two categories: i) lossy or guard-band quantizers

that drop measurements within a certain distance of the quantization thresholds (i.e.,

in the guard-bands) in order to achieve higher reciprocity [57] [58]r [60]; ii) lossless

quantizers that do not drop samples but employ compulsory privacy amplification to

remove the correlation between the generated bits [59]. The indexes of the dropped

samples are publicly exchanged by the nodes.

The guard-band quantization algorithm from [60] is extended to an adaptive guard-band

quantization algorithm, which divides the RSS measurements into blocks and applies

quantization with block-dependent guard-bands [27]. Later, a guard-band quantization

algorithm for IR-UWB CIRs [79] is developed: the corresponding guard-band thresh-

olds are the same across a CIR but evolve during the iterative key extraction process

starting from high values and decreasing (Section 2.2.2). In the context of experimen-

tal key generation based on IR-UWB CIRs, derivative-based and multi-bit uncensored

quantization schemes are compared in terms of bit mismatch and bit frequency for both

legitimate and illegitimate links [80].

Asynchronous quantization

An example of asynchronous quantization is given in [104] under the name of “Channel

Quantization Alternating” (CQA). Instead of using guard-bands, the mismatch proba-

bility is reduced by adapting the quantization to each observed sample. For example,

suppose that Alice quantizes her observation based on a one-dimensional quantization

map. She then indicates Bob which side of the cell her observation fell in (e.g., the

mapping bit can be “0” for left side and ’“1” for right side). Before quantizing his ob-

servation, Bob shifts the initial quantization map so that the cells are centered on the

sides of the initial cell corresponding to the mapping bit (i.e., if the mapping bit is “0”

an initial quantization cell (1, 2) becomes (0.5, 1.5) for Bob).

Parallel studies propose other asynchronous quantizers: i) a mix of guard-band and

asynchronous quantization including an authentication procedure intended for measure-

ments with symmetric distributions [64]; ii) a more general syndrome-based scheme in

which quantization and reconciliation are merged (i.e., Bob quantizes his observations

based on the syndrome computed by Alice from her initial observations before quan-

tization) [64]; iii) a multi-bit adaptive quantizer similar to CQA [104] preceded by an

interpolation filter for reciprocity and a decorrelation transformation for randomness

[30].
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2.2 Keys from sampled waveforms: random aspect

Experimental studies [79] [95] show that relatively long keys can be obtained when us-

ing an IR-UWB metrological test-bed with trigger-based synchronization. The testbed

consists of a pulse generator used to create a 2-9 GHz IR-UWB pulse, a digital oscil-

loscope with a time step of 50 ps at the reception side, and two omnidirectional dipole

UWB antennas. Synchronization is achieved through a wired link used to send a trigger

signal. These results have motivated supplementary evaluations of the key generation

protocol on a variety of typical indoor IR-UWB signals with a more realistic synchro-

nization method affected by asymmetric reception noise. The considered channels are

thus simulated based on the IEEE 802.15.4a standard [91]. We aim to understand the

effects of the previous quantization scheme (POS) on the random nature of the gener-

ated bits (i.e., intra-key randomness). The findings lead to the proposal of an extended

quantization algorithm (HIST), which improves the random patterns of the keys, while

maintaining an acceptable bit agreement ratio in noisy cases.

2.2.1 System model

The considered communication system includes two parties: Alice, denoted as A, and

Bob, denoted as B. The key generation protocol consists of two phases : i) the half-

duplex channel probing phase for signal acquisition and eventual processing and ii)

the key extraction phase, which takes place in the application layer and deals with

quantization and reconciliation. The signals received by Alice and Bob can be expressed

as follows:

yA(t) = (hBA ∗ p)(t) + wA(t) (2.5)

yB(t) = (hAB ∗ p)(t) + wB(t) (2.6)

where hAB(t) = hBA(t) are the reciprocal CIR, p(t) is the transmitted pulse waveform

with central frequency fc and bandwidth B and wA(t), wB(t) are random processes

of zero-mean Gaussian white noise with double-sided power spectral density N0/2 and

filtered in the band of the transmitted signal. The corresponding noise variance is

therefore σ2
w = N0/2× 2B. This model assumes that the pulse waveform is undistorted

during propagation, irrespective of its associated multipath component.

The received signals are uniformly sampled at sampling frequency Fs and N samples

are collected in an observation window whose overall time duration is (N − 1)/Fs. The

signal-to-noise ratio (SNR) is defined as the ratio between the mean power of the received
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noiseless signal and that of the noise:

SNR =
Psig
Pnoise

=

1
N

N∑
n=1

((h ∗ x)[n])2

σ2
w

(2.7)

where x[n] stands for the sampled version of x(t).

Processing of received signals

An example of an IEEE 802.15.4a CM1 channel realization h(t) and the analogue re-

ceived signal are shown in Figure 2.1(a) - 2.1(b). On each side of the A-B link, the CIR

can be estimated as ĥ[n] after performing, for example, a straightforward frequency-

domain deconvolution of the presumably known transmitted waveform p[n] out of the

received signal y[n].

Ĥ[l] =
Y [l]

P [l]
=
H[l]P [l] +W [l]

P [l]
(2.8)

ĥ[n] = IDFT (Ĥ[l]) (2.9)

with .[l] the Discrete Fourier Transform of .[n].

In an ideal noiseless case, Tx deconvolution without filtering is possible and the channel

estimation will tend towards a Dirac distribution like in Figure 2.1(c). In noisy cases,

filtering is compulsory for Tx deconvolution [105]. This modifies the characteristics of

the estimated signal: a simple brickwall filter equivalent to the pulse bandwidth would

make the estimation ĥ[n] tend to the form of a directly sampled signal (Figure 2.1(d)).

From the information-theoretic point of view, the bit extraction algorithms should use an

estimated infinite-bandwidth CIR (i.e., pairs of times and amplitudes). Filtered signals

like y[n] involve correlated samples, which could lead to deterministic characteristics of

the keys. However, channel estimation is a subject of research by itself and existing

algorithms are constrained either from the sampling point of view (e.g., high resolution

methods such as CLEAN [106]) or from the computational complexity point of view (e.g.,

compressed sensing algorithms [107]). Alternatives such as low-complexity algorithms,

which can be implemented on low power devices [94], would be more limited in capturing

the multipath richness (e.g., in terms of signal dynamics) and would be less suitable for

long key generation. Channel estimation aspects are studied in more detail in Section

2.4.

In this study, the following input signals for quantization are considered: i) the estimated

channel coefficients ĥ[n] obtained by filtered frequency-domain deconvolution according

to Eq. (2.9) (FD) and ii) the unprocessed samples y[n] from direct sampling (DS). Both
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(c) Noiseless deconvolution result without filtering
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(d) Noiseless deconvolution result with filtering

Figure 2.1: Channel estimation by frequency deconvolution (noiseless case)

strategies allow the extraction of a sufficient number of bits because of the large number

of available samples but they are also prone to degradations in randomness, which we

will study next.

Synchronization considerations

The initial IR-UWB quantization algorithm [79] is evaluated on experimental traces

acquired with a 2-9 GHz pulse generator and a 20 GHz real-time digital oscilloscope.

The receiver’s channel is synchronized with the pulse generator using a trigger signal.

In this study, a more realistic synchronization method based on level-crossing (leading

edge detection) will be used. This method aims at detecting the actual channel leading

edge (first signal-carrying samples) and using it as a starting point for the temporal

observation window. The used detection threshold (yth) is set as a function of the noise

variance. This means that the observation window on each side of the link will start at

a time tstart defined by the level-crossing time (ty(t)>yth) and a fixed delay (∆):

tstart = ty(t)>yth −∆ (2.10)
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where ∆ is employed in order to avoid missing significant samples from the signal.

2.2.2 Polarity-based quantization

The reference key generation method [79] [95] uses a dynamic threshold quantization for

bit extraction and can be applied to input signals like y[n] or ĥ[n], denoted as s[n] in

the following. The algorithm, although adaptive with respect to the signal dynamics,

does not depend on the temporal index (position) of the quantized sample and it is thus

entitled POS for the rest of the document. Its phases are the following:

• estimation of the variance of the noise contained in the input quantization signal

s[n] (N2
lev), which will be used to define a stopping rule for the bit extraction.

• bit extraction from s[n]:

– compute the first thresholds (i = 0) for quantization: L0
+ = max(s[n]) > 0

and L0
− = min(s[n]) < 0.

– at iteration i, apply the posi operator defined in Eq. (2.11) to the samples

of s[n] that cross the thresholds Li
− or Li

+, memorize the extracted delay

indexes n in a table P and the corresponding iteration step i in a table I.

posi(s[n]) =

{
1 if s[n] ≥ L+

i

0 if s[n] ≤ L−i
(2.11)

– update thresholds: L+
i+1 = L+

i − L0
+/δ and L−i+1 = L−i − L0

−/δ, where δ is

a scaling parameter of the protocol.

– repeat the two last steps until the wanted length is reached or the noise level

Nlev is approached within a guard interval depending on δ (e.g., Nlev+L0
+/δ).

Even though, overall, several thresholds are used, the bits are extracted only

from samples with amplitudes that cross the thresholds computed at the last

iteration before stopping the extraction.

• public discussion involving the exchange of the index tables (PA and PB), followed

by the selection of the common indexes and their corresponding bits.

• key correction using a Reed-Solomon code to fix mismatching bits. For bench-

marking purposes, we use the same code parameters as in [79]: total block length

of 127 seven-bit symbols and encoded message length of 123 symbols. Therefore

the maximum number of correctable symbols is 2.
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The described bit extraction is adaptive with respect to the SNR. If the SNR is rela-

tively high, a larger δ can be used; this corresponds to a lower stopping threshold and

thus, to the extraction of more bits. Furthermore, given a desired key length, the bits

corresponding to the most representative parts of the signal are given priority for ex-

traction. Nonetheless, the quantization is based only on the polarity of the input signal

with respect to the last threshold, independently for each sample/position. This simple

polarity-based encoding applied to a deterministic waveform could possibly lead to reg-

ular patterns in the extracted bits. An extension of this bit extraction method, which

takes into consideration the relationship between the amplitudes of different samples in

order to break the regularity pattern, is presented in the next section.

2.2.3 Amplitude/delay-based quantization

The HIST extension of the POS algorithm concerns the quantization phase described in

Section 2.2.2. The rest of the key generation protocol remains the same. The main idea

is to exploit the absolute amplitude of the signal across the iterative extraction steps in

order to improve the encoding process after applying posi. The observation window is

split into Nb bins of a given sample length ∆bin. These two parameters are considered

public. The auxiliary bit operations of HIST, denoted by the operator histb from Eq.

(2.12), are performed independently for each bin b ∈ {1, 2, ..Nb}.

histb(posik(s[n])) =

{
posik(s[n]) if k = odd

¬posik(s[n]) if k = even
, ik ∈ Ib (2.12)

where ¬ is the negation operator and Ib = {i1, i2, ...} is the set of ordered iteration

steps (indexed by k) that correspond to the extracted bits in bin b. The result consists

in a dynamic encoding of the samples depending on the threshold at which they are

extracted.

The new algorithm is illustrated on an example with one arbitrary bin (see Table 2.1

and Figure 2.2). In this example, the indexes 21, 23, 24, 26 and 29 belong to the same

bin if a bin contains 10 samples. The iteration steps corresponding to the bits extracted

by POS are also memorized (“Iteration steps” row). Even though they can be available

in both algorithms, the values of the iteration steps are not used for POS.

The result of applying this kind of post-processing is equivalent to a dynamic encoding

of the negative and positive amplitudes as a function of the absolute value and the delay

index or bin of the sample. With POS, the negative amplitudes are always encoded as

“0” and the positive amplitudes as “1”, but with HIST the encoding convention varies

across the observation window. As the samples are processed following the decreasing
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Table 2.1: Illustration of the bit extraction algorithms (HIST vs. POS)

Bits extracted by POS 1 0 0 1 1

Delay indexes of POS bits (P) 21 23 24 26 29

Iteration steps # (Ib) 10 12 10 17 12

Indices of the steps (k) 1 2 1 3 2

Final bits (HIST) 1 1 0 1 0
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Samples
21 22 23 24 25 26 27 28 29 30
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#10

#10

#12

#12

#17

#17

Figure 2.2: Illustration of HIST algorithm in one bin

order of their modules, nearby samples (i.e., belonging to the same bin) could have

different extraction histories, meaning that they could have been extracted at different

threshold levels. This type of information is transparent for POS but taken into account

by HIST. Note that, asymptotically, HIST tends to POS when the bin length, ∆bin, tends

to the temporal resolution used for signal acquisition, meaning that each bin contains

only one sample.

2.2.4 Performance evaluation

We assess the performance of the initial bit extraction algorithm (POS) and the proposed

extension (HIST) with standard indoor channels. The advantages in terms of random-

ness of POS with respect to one-level quantization [58] or guard-band quantization [60]

have already been observed using experimental traces [95]. Here, the data are generated

from statistical channel models, which account for the high density of multipath profiles

in indoor IR-UWB channels. We consider in particular CM1 and CM2, according to the

IEEE802.15.4a standard [91]. The initial pulse characteristics (i.e., central frequency of

4.5 GHz and 1 GHz bandwidth) are set so as to comply with both the FCC spectral

mask and one of the mandatory bands of the 802.15.4a band-plan, but also with recent
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low-power implementations of IR-UWB transceivers [94]. The simulated sampling fre-

quency has the same order as that of the experimental tests [79] [95] (20 GHz2) and the

observation window has a duration of 100 ns. The following performance metrics have

been retained:

• key agreement ratio defined as the success rate of key establishment, i.e., when

final bits (after reconciliation) on both sides of the link are identical (computed

over different IR-UWB channel realizations); an extension of this metric is the min.

64-bit key agreement defined as key agreement ratio with an additional constraint

on the minimum key length (64 bits).

• mean key lengths computed for successful keys only (i.e., after reconciliation).

• mean bit agreement ratio between the two parties after the extraction phase and

before reconciliation.

• mean number of different bits between POS encoding and HIST encoding (before

reconciliation).

• random nature of the extracted keys, tested with bit periodicity tests and with the

NIST test suite [102](before reconciliation).

The algorithms are first of all evaluated in a noiseless scenario, in which generated bits at

A and B are always identical (i.e., the key agreement ratio is 1). The goal is to evaluate

their intrinsic randomness properties, which depend on the transmitted waveform and

on the multipath channel. Next, the reciprocity properties are discussed as a function

of the SNR.

Random aspect evaluation with noiseless signals

Preliminary tests are performed on keys of minimum 128 bits generated with an initial

scenario (CM1 channels, FD strategy). We analyze graphically the impact of the deter-

ministic waveform on the generated bits and then, we apply the NIST tests. In the end,

we show that the conclusions can be generalized to other scenarios.

First of all, the periodic nature of the extracted bits is tested using the Fast Fourier

Transform (FFT) on each key. Figure 2.3 shows a regularity pattern for POS keys in

both bit and frequency domains. The dominant frequency component at approximately

0.27 is equivalent to a bit pattern period (BPP) of 1/0.27 = 3.7 bits. The quantization

2Although this sampling frequency is too restrictive for embedded devices, we maintain it for com-
parison purposes.
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diversity of HIST seems to solve this issue because HIST keys do not show any particular

dominant frequency.
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Figure 2.3: Periodic nature of CM1 extracted keys using FD strategy. Parameters:
δ = 10 (POS and HIST) and ∆bin = 10 samples (HIST)

The regular bit pattern in POS is a consequence of the static encoding applied to the

polarity of the waveform. The bits imitate the waveform’s oscillations, which are deter-

mined by its central frequency. Therefore, when changing fc from 4.5 GHz to 2.5 GHz,

HIST presents the same approximately white frequency aspect as before while POS

shows a dominant frequency of 0.158, i.e., a BPP of 6.33 bits (obtained by averaging

the FFT representation over 500 keys). The BPP is actually proportional to the central

frequency as shown in Eq. (2.13). Moreover, the BPP for POS approximately follows

the analytical expression from Eq. (2.14) obtained by a geometrical computation on the

sine wave and assuming that the extraction process stops at the last threshold L0
+/δ

for every key (Appendix A). This is actually an upper bound of the real BPP and its

values are 4.2 bits for 4.5 GHz and 7.4 bits for 2.5 GHz.

6.33

3.7
= 1.71 ≈ 1.8 =

4.5

2.5
(2.13)
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uBPP = 2Fs(
1

2fc
− 2

arcsin(1/δ)

2πfc
) (2.14)

Secondly, the use of the NIST statistical suite for pseudo-random number generators

[102] allows the investigation of various characteristics of the keys such as: bit frequency

(frequency test or block frequency test), random walks (cumulative sums test), frequency

of oscillations between different bits (runs test and longest run within a block test), and

frequency of all possible overlapping bit patterns of a certain length (serial test). Two

of the tests (cumulative sums and serial) have 2 variants depending on the sense of the

sequence processing: direct or reversed. It is important to keep in mind that such tests

cannot tell whether a sequence is random. They can only show defects in the random

nature by pointing out when certain keys are prone to a deterministic behavior. As they

employ statistical methods, the tests have to be realized on a large number of fairly long

keys.

The NIST suite is built upon the principles of statistical hypothesis testing, in which the

null hypothesis is that a sequence is random, given the particular randomness feature.

Each test computes a relevant randomness statistic and an associated “p-value” repre-

senting the probability that a perfect random number generator produced a sequence

less random than the tested sequence [102]. A key is said to pass the test when its

computed p-value is higher than 0.01 (a common value for the level of significance of the

test, i.e., the probability of rejecting the null hypothesis when it is true). Nonetheless,

a given set of keys pass a certain test if a very large proportion of the keys pass the

test (pass rate) and if the p-values of the keys are uniformly distributed in the (0,1)

interval. The need of p-value uniformity is explained with an example: at the limit, a

constant p-value of 1 in the frequency test represents a 100% pass rate but also an equal

proportion of ones and zeros, which means that from this point of view, the key is not

entirely random.

For the considered initial scenario, POS passes the frequency and random walk tests,

but fails the oscillations and pattern tests for almost all the keys. Moreover, it does not

respect the uniformity criterion on the p-values for any of the tests. On the contrary,

HIST shows an improvement in the uniformity of p-values over all tests and manages

to pass them with a minimum proportion of 94%. These results reinforce the trends

observed in the key-frequency diagrams from Figure 2.3, which give a complementary

representation of the statistical pattern test.

Next, we present a synthesis of four randomness tests for the initial scenario (CM1,

fc = 4.5 GHz, B = 1 GHz, FD strategy) and for several extensions using various

channel models, central frequencies and bandwidths, or with a different input signal (DS
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Table 2.2: Statistics on NIST randomness tests for several scenarios: A(CM1/
[fc;B]=[4.5;1] GHz/FD) & B(CM2/ [fc;B]=[4.5;1] GHz/FD) & C(CM1/ [fc;B]=[2.5;1]
GHz/FD) & D(CM1/ [fc;B]=[4.5;0.5] GHz/FD) & E(CM1/ [fc;B]=[4.5;1] GHz/DS)

Scenario Metric
Block
Freq.

Cum.
Sums(1)

Runs Serial(1)

A
POS

% 100% 100% 3% 0
103V ar 3.33 10.93 NA NA

HIST
% 98% 98% 94% 94%
103V ar 81.96 90.17 89.62 77.52

B
POS

% 100% 100% 2% 0
103V ar 3.86 15.10 NA NA

HIST
% 97% 96% 93% 93%
103V ar 87.45 96.59 96.23 83.99

C
POS

% 100% 100% 59% 0
103V ar 5.93 15.84 15.26 NA

HIST
% 99% 99% 98% 97%
103V ar 83.53 86.85 86.91 83.62

D
POS

% 100% 100% 2% 0
103V ar 3.51 11.58 NA NA

HIST
% 96% 95% 89% 91%
103V ar 85.60 95.79 83.78 79.90

E
POS

% 100% 100% 1% 0
103V ar 3.06 10.35 NA NA

HIST
% 98% 97% 90% 92%
103V ar 80.06 89.18 90.41 78.69

strategy). The algorithm parameters, the key lengths and the number of tested keys are

the same as for the previous tests. The condensed metrics are the pass rate (%) and the

variance of the p-values used for representing the uniform character of the repartition

(V ar). If the variance is small, this would correspond to a non-uniform repartition of

p-values meaning that the extraction algorithm is prone to produce keys within certain

p-values, i.e., with a certain deterministic aspect, regardless of the channel.

The results are presented in Table 2.2. The conclusions of the initial scenario can be

reported to all the other scenarios. HIST pass ratios in the runs and serial tests slightly

decrease when using a narrower bandwidth pulse (scenario D). A supplementary test

confirms that the pattern drawback found by the serial test (pass rate of 91%) is related

to the bin size, which becomes comparable to the pulse duration in scenario D: by

increasing the bin size to 20 samples, the serial(1) pass rate for HIST becomes 96%,

meaning that the pattern defect is a limitation of the encoding procedure itself, which

is, after all, a deterministic algorithm. Overall, from the point of view of these tests, the

best scenario for both POS and HIST would be one using the FD strategy as well as a

pulse with lower central frequency (i.e. with less oscillations), but large bandwidth.

In conclusion, the proposed extension, HIST, passes all the tests in most cases and solves
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Metric name POS HIST

Key agreement 99.9% 24.5%

Mean key length 123 116

Min. 64-bit key agreement 98.2% 23.5%

Mean bit agreement 99.9% 93.4%

Mean number of changed bits - 46.8

Table 2.3: Performance metrics for the extraction of keys of max. 128 bits from CM1
channels using the DS strategy at SNR=30 dB. Parameters: δ = 10 (POS and HIST)

and ∆bin = 10 samples (HIST).

the problem of the p-value repartition with the trade-off of a more complex quantization

scheme that can become less effective in practical SNR conditions.

Reciprocity evaluations with noisy signals

In the case of noisy signals, the reciprocity is affected by both noise and synchronization

errors (i.e., different starting points of the observation/quantization window). When the

input signal for quantization is a noisy estimate of h(t), the reciprocity becomes even

lower because of the intermediate processing step (i.e., deconvolution). As the random

character of the generated keys does not vary considerably between the FD and the DS

strategies, we investigate the performance of the quantization of DS signals for different

values of the algorithm parameters δ and ∆bin. Ideally, the parameters’ values should be

as high as possible in order to generate many bits (large δ) with good random properties

(large ∆bin); specifically, a large ∆bin implies many detected thresholds in a bin, which

leads to diversified encoding according to HIST.

Preliminary tests using the initial scenario as in the previous section are performed for

multiple 802.15.4a CM1 channel realizations. The results are summarized in Table 2.3.

Even at large SNR, significantly lower key agreement rates are achieved for HIST (24.5

% in comparison to 99.9% for POS). This is mainly due to the more complex encoding of

amplitude information, which is more sensitive to both noise and synchronization errors

and leads to a lower bit agreement before reconciliation. A mean bit agreement of 93.4%

cannot be entirely corrected by the chosen Reed-Solomon code; an alternative would be

to increase the correction capacities of the Reed-Solomon code with the drawback of

having a higher bit agreement rate with an attacker that would also benefit from the

error correction scheme. However, if privacy amplification techniques were applied, this

issue would be solved with the drawback of obtaining less bits.

Figure 2.4 shows the limitations of HIST in terms of generating successful 64-bit keys

especially for high δ and ∆bin values. The lower key agreement ratio for HIST is mainly
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due to the more complex encoding using the threshold information, but also to the

key length constraint. POS does not experience the same phenomenon because it only

encodes the polarity of the waveform, making it more robust to noise, but with a weaker

random aspect.
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Figure 2.4: Key agreement for POS and several variants of HIST(∆bin(samples)),
SNR=20 dB and SNR=30 dB
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Figure 2.5: Bit agreement for POS and several variants of HIST(∆bin(samples)),
SNR=20 dB and SNR=30 dB

However, HIST maintains a reasonably high bit agreement ratio (Figure 2.5) while pro-

viding a dynamic amplitude encoding. The number of differently encoded bits between

POS and HIST, employed to measure the diversity offered by HIST, also remains rela-

tively high even for small ∆bin values (e.g., between 20 and 85 for ∆bin = 4 samples).

The findings about HIST can be extended to lower SNR values such as 10 dB or 5

dB, which are not directly exploitable because of the restrictive key agreement ratio,
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but remain, nonetheless, a good source of common bit extraction (e.g., at δ = 12 and

∆bin = 4, the mean bit agreement ratio is 80% for 10 dB and 73% for 5 dB).

2.2.5 Summary

In this section, we have studied several randomness aspects of physical layer key gen-

eration using directly sampled IR-UWB signals or channel estimations obtained by fre-

quency deconvolution. We suggest a new bit encoding algorithm (HIST) based on the

delay and amplitude information of each sample (i.e., bins and thresholds) in order

to improve the random patterns of the generated keys, irrespective of any reciprocity

constraints.

HIST is an invertible overlay to the adaptive-threshold quantization algorithm developed

in previous studies [79] [95]. Its main advantage is to improve the random patterns of the

keys suffering from deterministic characteristics of the input signal, such as the pulse

waveform that contributes to the correlation between samples and therefore between

bits. Finally, we test the algorithms over multiple 802.15.4a channel realizations and

find that an acceptable mean bit agreement ratio can be obtained for the proposed

solution over a range of medium to high SNR values.

NIST tests results also show that a pulse with a lower central frequency and a larger

bandwidth should be preferred for randomness considerations. The advantage of a larger

bandwidth is obvious because it offers higher channel resolution capabilities and thus

“more” information. Employing a lower central frequency or sampling directly the enve-

lope of the signal means having to lower the sampling frequency as well, which will lead

to shorter keys. These aspects are however common to both initial algorithm and the

proposed solution. In this context, we argue that HIST provides an improved encoding

mechanism for high-sampling scenarios in which key length is a priority.

2.3 Keys from CIRs: reciprocity-randomness trade-off

As explained in the previous section, secret keys are preferably extracted from the chan-

nel coefficients that should be estimated after the channel probing phase. Thus, based

on simulations, we examine the behavior of various generic quantization schemes applied

to noisy channel estimates of an IR-UWB channel.

While in high-resolution or rate-distortion theory [101] the “quantization” aims to reduce

a certain distortion metric and the number of bits used to represent the quantized signal,

in the key generation context a different trade-off arises. In former investigations on
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secret key quantization [30], a new extraction algorithm and a suitable reconciliation

scheme have been proposed in order to find a good trade-off between key length and

reciprocity (i.e., the number of matching bits between the two parties). Nevertheless,

the problem can have an additional optimization axis : the probability of occurrence of

each codeword of the codebook used for quantization. These probabilities can be set

to their optimal values, which correspond to equally distributed codewords [30]. In this

study, we will set the length of the codewords (relevant for, e.g., applications with fixed

length constraints) and investigate the trade-off between reciprocity, as a measure of

robustness, and codeword diversity, as a measure of randomness.

2.3.1 System model

The estimated CIR at each user, ŷu(t), is a noisy version of the standard multipath

model, considering noise on the amplitudes of the channel coefficients:

ŷu(t) = h(t) + wu(t) (2.15)

h(t) =
K∑
k=1

xkδ(t− τk) (2.16)

wu(t) =
K∑
k=1

wukδ(t− τk) (2.17)

where u ∈ {A,B}, K is the number of estimated multipaths, xk is the channel tap (or

equivalently, the small-scale amplitude) of the k-th multipath, wuk is the estimation noise

at user u for the kth multipath and τk is the excess delay of the kth multipath. The

noise is generated from a synthetic noise model, meaning it does not correspond to the

noise issued from a real channel estimator.

In order to generate a binary sequence, we apply a quantization algorithm to the K

samples yuk = xk+wuk considered as realizations of the independent RVs Y u
k = Xk+W u

k ,

with Xk the RV modeling the channel taps at excess delay τk and W u
k ∼ N (0, σ2

0) the

RV modeling the hypothetical estimation noise at excess delay τk.

The employed guard-band quantization algorithm, which is allowed to vary as a function

of the excess delay, is defined by :

• a binary Gray codebook of 2b valid binary codewords and one invalid codeword

corresponding to the guard-band interval : C = {cj ∈ {0, 1}∗|len(cj) = b, j ∈
{−2b−1, . . .− 1, 1, . . . , 2b−1}} ∪ {c0}.

• the respective inferior and superior quantization thresholds delimiting each quan-

tization cell : θinf = {θinfj |j ∈ {−2b−1 . . . 2b−1}, θinf0 = −σ0, θ
inf
−2b−1 = −∞} and
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θsup = {θsupj |j ∈ {−2b−1 . . . 2b−1}, θsup0 = σ0, θ
sup
2b−1 = ∞}. The quantization cells

are considered adjacent (θsupj−1 = θinfj ). For simplicity, we use θj = θinfj for j ≥ 1,

θj = θsupj for j ≤ −1 and θ = θinf ∪ θsup for obvious symmetry reasons. This leads

to the representation in Figure 2.6.

• a quantization rule : qkey(y) = cj if y ∈ [θinfj , θsupj ).

......

Figure 2.6: Quantization thresholds

In the following, we set the length of the codewords to a fixed value b and we define

two types of reciprocity and diversity metrics: inter-key metrics (computed at a fixed

excess delay τ by averaging over noise and channel realizations) and intra-key metrics

(computed for one channel realization by averaging over the present channel taps). The

inter-key metrics characterize the robustness and randomness properties of an “average”

codeword generated at a given excess delay and are employed for the design of delay-

adaptive quantization schemes (Sections 2.3.3). The intra-key metrics can measure

the performance of a given quantization scheme applied to a single channel estimation

(Section 2.3.4).

Inter-key reciprocity and diversity

The small scale amplitudes |xk| are modeled using a m-Nakagami distribution in the

IEEE 802.15.4a standard [91]. In order to have tractable formulas and to take into

account the sign of the channel tap, we adopt a Gaussian mixture approximation for

the RV Xk. This model should represent the equally distributed positive and negative

multipath components. As we are interested in the average behavior at a certain excess

delay τ , we will denote by n the index of this uniformly sampled excess delay and we

will focus on the typical channel tap at τ , namely Xn. According to this convention,

k represents the index of the existing paths in one channel realization whereas n is the

index corresponding to the sampled excess delay irrespective of any channel realization.

Xn ∼
1

2
N (−µn, σ2

n) +
1

2
N (µn, σ

2
n) (2.18)

with µn = E[|Xn|] and σn, the standard deviation of |Xn|, representing channel parame-

ters computed empirically from simulations using the 802.15.4a channel model CM1 and
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a reference acquisition window. The mean and the standard deviation of the channel

taps are decreasing functions of the excess delay index n, similarly to the power delay

profile (PDP).

The performance metrics per valid codeword at fixed excess delay n are:

• mean Hamming distance between two valid codewords CAn and CBn (to be mini-

mized):

HD(n, θ) = EXn [EWn [hd(CAn , C
B
n )|CAn , CBn 6= c0]] (2.19)

• spread of valid codewords (to be minimized):

CS(n, θ) = std({P u,1n , P u,2n , ..., P u,2
b

n }) (2.20)

P u,jn = P(Cun = cj |Cun 6= c0) (2.21)

with Cun the codeword issued from the quantization on bn bits of the nth sample at user

u, hd(c1, c2) = |{k|(c1)k 6= (c2)k}|, (.)k the kth bit of a codeword.

We also define a tunable scalar cost function used to study the trade-off between reci-

procity and diversity by varying the relative importance of the components using the

weight λ according to Eq. (2.22). The reciprocity component is normalized with re-

spect to a fixed number of bits bn = b and the diversity with respect to its maximum

value (i.e., the standard deviation of a repartition with one codeword appearing with

probability 1).

L(λ, n, θ) = (1− λ)
HD(n, θ)

b
+ λ

2b · CS(n, θ)√
2b − 1

(2.22)

The above-mentioned reciprocity (HD) and diversity (CS) metrics depend on the binary

codebook, on the statistical model of Y u as well as on the quantization thresholds. For

our investigations, we arbitrarily choose a Gray codebook on bn = 3 bits assuming that

Xn follows the distribution in Eq. (2.18) and that it is independent of Wn. The details

of the computation and the final expressions are provided in Appendix B. The inter-key

reciprocity-randomness trade-off is studied in Sections 2.3.2-2.3.3.

Intra-key reciprocity and diversity

The same reciprocity and diversity metrics can be defined per channel realization by

averaging over the existing paths in the given channel (Eq. (2.23)-(2.24)). The result
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can be subsequently averaged over channel realizations. These definitions are simulation-

oriented and do not require an analytical model for the distribution of the channel taps.

HD1(θ) = Ek[hd(CAk , C
B
k )|CAk , CBk 6= c0] (2.23)

CS1(θ) = std({P 1, P 2, ..., P 2b}) (2.24)

with P j representing the probability of occurrence of codeword cj within the codewords

generated from one channel realization.

The intra-key reciprocity-randomness trade-off is investigated in Sections 2.3.4-2.3.5.

2.3.2 Quantization thresholds

This subsection presents the various threshold computation methods that have been

employed in the present study.

Uniform and non-uniform quantization

Several quantization techniques with the same guard-band intervals (i.e., θinf0 = θ−1 =

−σ0 and θsup0 = θ1 = σ0) are considered:

• uniform quantization (UQ) : the quantization intervals for each codeword have a

fixed width ∆q.

• quantile-based quantization (QQ): the quantization thresholds are computed a

priori in order to achieve a specific codeword repartition. A uniform repartition

of all the codewords (eq: P u,jn = 1/9 for any j, n) and a non-uniform repartition

(ineq: P u,−1
n = P u,1n = 40% for any n) are given as examples.

• companding-based quantization (CQ): inspired by the work on companders [108],

the initial samples are transformed with an exponential function and the output

is quantized uniformly. The employed “expanding” function is the inverse of the

µ-law function [108] with range [−1, 1]:

exp(yn) = sgn(yn)
((1 + µ)|yn| − 1)

µ
(2.25)

with sgn(.) the sign function and µ an arbitrary parameter. The result is a non-

uniform quantization algorithm with gradually decreasing quantization intervals,

which are also symmetric with respect to 0. Accordingly, the quantization intervals
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are expected to be larger for the values yn with lower signal-to-noise ratio (SNR)

and the reciprocity improved.

To sum up, the UQ and CQ methods have fixed quantization thresholds, while the QQ

thresholds are dynamically computed as a function of the desired codeword distribution

and the excess delay n.

Optimization of the quantization thresholds

The optimization of a multi-objective function {HD(θ), CS(θ)} can be achieved using

a scalarization technique (O1) or a constraint-based method (O2) [109].

(O1) : minimize
θ

L(λ, θ) s.t θj ≤ θj+1, j ∈ {1, 2, 3}

θj = −θ−j , j ∈ {2, 3, 4}
(2.26)

(O2) : minimize
θ

HD(θ) s.t θj ≤ θj+1, j ∈ {1, 2, 3}

θj = −θ−j , j ∈ {2, 3, 4}

CS(θ) ≤ c

(2.27)

with c an a priori constraint parameter on the diversity metric.

2.3.3 Performance evaluation I

Reciprocity-diversity trade-off

We analyze the expected trade-off between reciprocity and codeword diversity computed

using Eq. (2.19)-(2.20) and the channel tap model described in Section 2.3.1. The param-

eters of the Gaussian mixture model for the channel taps Xn are computed empirically

from IEEE 802.15.4a simulations over a 50 ns acquisition window: µn ∈ [0.075, 0.44],

σn ∈ [0.05, 0.18]. The estimation noise is fixed at a reference value of σ0 = 0.1. This

corresponds to a variation of the SNR from 13.5 dB to -0.9 dB between the beginning

and the end of the acquisition window.

At fixed CS (QQ scheme), the mean Hamming distance increases almost linearly with

the excess delay because of the degradation in the SNR (Figure 2.7). The UQ and CQ

quantization algorithms achieve an optimal HD at a characteristic excess delay, which

corresponds mainly to an asymptotically high value of CS (Figure 2.8). The UQ and CQ



Chapter 2. Quantization of IR-UWB signals 56

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Excess delay (ns)

N
o
rm

a
li
z
e
d
H
D

 

 

UQ: ∆q = 0.25
UQ: ∆q = 0.35
QQ: eq
QQ: ineq
CQ: µ = 0.5
CQ: µ = 3
CQ: µ = 5

Figure 2.7: Inter-key reciprocity cost for various quantization schemes
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Figure 2.8: Inter-key diversity cost for various quantization schemes

behavior is linked to the actual values of the quantization thresholds and to the evolution

of the signal dynamics with the excess delay (its mean and standard deviation).

In conclusion, on the one hand, fixing the codeword diversity like in the QQ case requires

specifying the distribution of each codeword, which is unnecessary because, from the

application point of view, the interest lies in the spread metric. On the other hand,

using strategies like UQ and CQ gives no control on the final trade-off and no indication

of the optimality of the scheme. To respond to these constraints, in the next section we

present the results of an optimization study on the quantization thresholds.
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Optimized quantization thresholds

Given the symmetry of the problem, the optimization can be performed on a three-

dimensional variable θ = [θ2, θ3, θ4], which contains the positive thresholds corresponding

to a quantization on 3 bits (i.e., 8 valid codewords in total including 4 codewords corre-

sponding to positive values of yn). The optimization routines are based on Eq. (2.19),

(2.20), (2.22) and on the a priori measured channel statistics (µn, σn). Both problems

are solved with a nonlinear constrained optimization function using the interior-point

algorithm (fmincon solver from Matlab R©). In the case when the optimization results

vary with the initialization values of the solver (e.g., for O1), the final thresholds are the

ones achieving the minimum cost over 100 trials starting from uniformly random initial

values.

For illustration purposes, we use two SNR values corresponding to different excess delays

in a real channel (SNR1 = 13.5 dB and SNR2 = 7.3 dB). The obtained thresholds with

O1 are shown in Figure 2.9.
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Figure 2.9: Illustration of the optimal thresholds O1 for SNR1

For both SNR values, we observe a sudden variation of the threshold values from small

to large λ which corresponds to a bi-static behavior of the general cost function L(θ): at

small λ values, the reciprocity is optimized (i.e., only one codeword is generated) while

at high λ the codeword diversity is optimized (i.e., uniformly distributed codewords).

For SNR1, the optimization routine is able to find an intermediate point corresponding

to the statistical domination of two codewords, but this is not the case for SNR2. This

means that O1 is not efficient to look for a good compromise solution between reciprocity

and diversity, especially since there is no direct a priori link between λ and the relative
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Figure 2.10: Illustration of the thresholds O1 for SNR2

importance of the objective functions [109], which makes it difficult to solve the multi-

objective optimization problem.

The search for Pareto-optimal points for the multi-objective optimization problem can

be solved by O2, which will give access to weak Pareto-optimal solutions. In contrast to

O1, O2 has the capability of finding points of the non-convex region of the Pareto-optimal

front [109]. In Figure 2.11, we show the optimal points found by O1 with different λ

values and those found by O2 with different constraint (c) value, as well as the costs

achieved by the previous quantization schemes.
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Figure 2.11: Inter-key costs for various quantization schemes
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In the case of O1, we can retrieve the points corresponding to the different regimes (3 for

SNR1 and 2 for SNR2). O2 finds points in the non-convex parts of the front, including

one close to the intermediate regime of O1, which visually corresponds to an inflexion

point of the front (intersection of O1 and O2 for SNR1).

All the other methods (CQ, QQ, UQ) achieve usually higher costs. The uniform quan-

tization (UQ) parameterized with 36 different quantization steps between 0.05 and 0.4

presents an interesting behavior for SNR1 : the performance for certain quantization

widths (∆q ≥ 0.16) is close to that of the optimal points found by O2. This means

that, for certain SNR and constraint values, we can simplify the problem and compute

optimal uniform quantization steps, which would achieve the same performance as the

resolution of O2.

2.3.4 Diversity-aware quantization

After the study of inter-key reciprocity and diversity in Section 2.3.3, this section

presents a quantization scheme, entitled DIV, that improves the intra-key diversity met-

ric based on a circular dictionary rotation as a function of the excess delay.

The proposed method is an adaptation of the one-bit HIST algorithm for directly sam-

pled signals (Section 2.2) to a general multi-bit quantization scheme while considering a

simplified model for noisy estimated multipath components. We recall that HIST pro-

duces keys with better randomness properties because of its diversified encoding based

on the amplitude and on the delay of the quantized samples. This can be considered as

a form of intra-key diversity since it implies a change in the probabilities of occurrence

of the one-bit binary codewords employed by the existing algorithm POS.

We consider the noisy channel estimate model from Eq. (2.15) with noise only on

the multipath amplitudes and a uniform-threshold quantization scheme (UQ) on b bits

of step ∆q. Accordingly, each channel realization produces K noisy samples yuk for

quantization. In this study, we consider the same quantization thresholds regardless of

the excess delay τk of the quantized sample yuk .

The proposed DIV scheme operates as indicated in Figure 2.12. The excess delay axis

is split into bins of width ∆bin and the quantization dictionary varies from one bin to

another by means of a rotation. The samples are quantized depending on their excess

delay τk by using the dictionary corresponding to the bin in which they fall. We denote

as FIX the alternative fixed-dictionary guard-band quantization in which the dictionary

is the same irrespective of the excess delay.
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Figure 2.12: Illustration of the diversity-aware quantization method (DIV)

2.3.5 Performance evaluation II

In order to compare the two quantization approaches (FIX and DIV), we compute the

intra-key reciprocity and diversity metrics according to Eq. (2.23)-(2.24) for various

quantization steps ∆q and bin widths ∆bin. The noise variance is arbitrarily set at

σ0 = 0.1. A change in the value of σ0 would only scale up or down the reciprocity-related

values. Figures 2.13-2.14 show the averaged metrics over 1000 IEEE 802.15.4a channel

realizations with a maximum excess delay of 50 ns and variable number of multipath

components K. As expected, the reciprocity metric is not impacted by the proposed

dictionary rotation because, in this model, we do not consider any errors on the excess

delay estimations. The diversity measure is improved according to the bin size (smaller

bin sizes are preferable) and is kept approximately constant with the quantization step.

This means that DIV can help to recover some of the encoding diversity lost when

increasing the quantization bin in order to obtain more reciprocal sequences.

In order to create intra-key codeword diversity, DIV relies on the information given by

the temporal delays of the multipath components. When the corresponding estimates

are also corrupted by noise, the performance of DIV in terms of reciprocity will be lower.

The impact of realistic channel estimates on reciprocity is the focus of Section 2.4.

As already mentioned in Section 2.3.4, HIST also achieves intra-key diversity, which

might seem contradictory at first sight because the uniformly sampled signals employed

for testing HIST do not contain explicit delay information, such as excess delays. We
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argue that by combining the information given by the extraction threshold (or, equiva-

lently, the amplitude) with the information provided by the bin affiliation (or, equiva-

lently, the delay), HIST is a quantization scheme that indirectly depends on the alter-

nations of the waveform with the excess delay, i.e., the multipath information. IR-UWB

CIRs or signals are an interesting option for key generation first of all because of the fact

that one measurement provides several values for quantization, but also because of the

delay information contained in such signals. Schemes like HIST and DIV are examples

of quantization schemes that consider both amplitude and delay information to improve

the generated keys.
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2.3.6 Summary

In this section, we focused on simulated IR-UWB channel estimates in order to inves-

tigate typical trade-offs that arise in the process of fixed-length quantization for key

generation purposes. We have introduced a practical way of quantifying randomness

based on the probabilities of occurrence of binary codewords at a fixed excess delay

(inter-key diversity) or over an entire IR-UWB channel estimation (intra-key diversity).

It should be noted that despite their similar flavor, the inter-key and intra-key metrics

characterize different phenomena inherent to key generation using IR-UWB-like signals

(i.e., amplitude-delay pairs).

In the first case, the amplitude quantization thresholds can be adapted as a function of

the excess delay in order to achieve a desired trade-off between inter-key reciprocity and

diversity. The threshold computation is performed through an optimization procedure

based on the statistics of the IR-UWB channel and of the noise. It is therefore an a priori

design method for “on average” optimal thresholds. Furthermore, we show that there

exist uniform quantization steps achieving the same trade-offs as that of the optimized

thresholds, which could potentially reduce the complexity of the quantization design

step. In the second case, given the same uniform quantization step for the entire channel

estimation, we illustrate an intra-key diversity-aware quantization scheme based on a

delay-adaptive encoding dictionary. The proposed algorithm does not require identical

quantization thresholds over the excess delay, so we can also use the computed thresholds

in order to achieve the desired inter-key reciprocity and diversity trade-off. The mixed

scheme would be characterized by the following:

• for each excess delay, we can choose beforehand the thresholds that achieve the

desired inter-key reciprocity-diversity trade-off, meaning that, on average, some of

the codewords will be likely to appear more often than others.

• when quantizing one particular channel estimate, the dictionary is varied circularly

so that there are delay-dependent variations in the codewords that are more likely

to appear.

The expected effect can be summarized as: decreasing diversity to achieve more reci-

procity and then re-boosting diversity. However, this should be confirmed by further

studies meant to investigate the interaction between the inter-key diversity and intra-

key diversity and possibly extend them to incorporate more complex randomness aspects

inspired, for example, by the NIST tests [102].

To conclude with, in this section, we have shown the interest of using statistical or

absolute delay information for designing more robust quantization schemes. However,
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the findings may be limited by the necessity to operate with a priori known and reliable

statistics in a given environment or by the channel estimation performance of real devices

and multipath extraction algorithms. The latter will be investigated in the next section.

2.4 Keys from CIR estimates: impact on reciprocity

As already explained, an IR-UWB CIR is in theory a promising source of information

for shared secret key generation [77] because of the fine temporal resolution capabilities

of the IR-UWB technology (Section 1.3). The latter allows the extraction of accurate

information such as amplitude and delay of the representative multipath components of

a CIR. Not only does one CIR contain several scalar values, the latter are hard to predict

by an attacker without knowing the exact positions of A and B or without employing

complex ray-tracing tools [92] [96].

However, the main challenge is the way a receiver, usually limited in sampling frequency,

representation dynamics or computational capabilities, can perceive the channel. This

channel representation is the output of the channel probing phase and the input of the

key quantization algorithm. Therefore, the reciprocal character of such signals is nec-

essary for the study of key generation procedures using IR-UWB waveforms. In the

present model, the degradations in the reciprocity of the inputs are caused by conven-

tional additive noise on the received signal. However, a real system would also suffer from

unbalanced radio frequency (RF) chains, antenna matching problems, non-linearities etc.

on top of noise.

In this section, we start with an overview of channel estimation methods applicable

to IR-UWB channel impulse responses. Then, we analyze the reciprocal character of

IR-UWB channel estimates obtained with various types of estimators offering different

trade-offs in terms of performance/complexity/hardware requirements: a high-resolution

correlation-based estimator [110] and two sparse channel estimation methods [107] [111].

Finally, we infer a practical post-processing mechanism that can be applied to these

signals before quantization in order to improve their reciprocity.

2.4.1 State of the art: channel estimation

Because of the high bandwidth occupied by IR-UWB communications, synchronization

and channel estimation typically require high sampling rates of the order of tens of

GHz. Moreover, in dense multipath environments (e.g., indoors), which we are mainly

interested in, the number of parameters to estimate (i.e., delays and amplitudes) can
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be relatively large. The tutorial in Yang and Giannakis [89] provides several examples

of timing acquisition techniques and channel estimation methods adapted to IR-UWB

signals. Further, we will present an extended classification of channel estimators based

on the required sampling frequencies employed for signal acquisition before the key

generation stage (high, low, or sparse). The sparsity-aware estimators, which take into

account the sparse structure of the CIR modeled as a Dirac stream, are divided into two

categories based on their approach: Finite Rate of Innovation (FRI) estimators, which

translate the channel estimation into an harmonic retrieval problem, and Compressed

Sensing (CS) algorithms.

High-resolution methods

The first category includes the channel estimation algorithms that require sub-pulse

sampling resolutions. Maximum-likelihood (ML) estimators for the amplitudes and de-

lays are described for single-pulse channel sounding [112] and (non-) data-assisted [113]

scenarios. These estimators can be applied in high-complexity Rake receivers.

Joint synchronization and channel estimation can be achieved by a least-squares estima-

tor, which takes into account the clustered channel structure computed in advance with

a subspace detection method [114]. This method assumes knowledge of the multipath

order and an upper bound on the maximum excess delay.

Blind channel estimation for PPM transmissions is solved by exploiting the first-order

cyclostationarity property of the received signal [115].3 In this particular case, the mean

over multiple equally distributed symbols of PPM transmissions is exploited to derive

the CIR in a blind scenario. The proposed solution involves an FFT-based circular

deconvolution.

More recent work on single-pulse channel estimation introduces the iterative detection

of the multipaths delays and gains by splitting the ML estimate of the CIR [112] in

two iterative steps: i) suboptimal search of the channel delays using a correlation-based

method for resolvable paths; ii) computation of the channel gains based on the previously

estimated delays. A variant of this approach is called the “search-subtract-readjust”

algorithm introduced in [116] for characterizing the ranging precision of UWB localizers

and exploited in [110] for evaluating the number of detectable multipaths in indoor

channels. In our reciprocity evaluations, we will employ this channel estimation method,

which, at each iteration step, readjusts all the previously estimated gains as a function

of the newly estimated delay.

3Cyclostationary signals have statistical properties that vary circularly in time.
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The aforementioned solutions consider the “sparse” channel model described in the stan-

dardization literature [91]. This model is extended to include “diffuse” components [117]

modeled as Gaussian variables and adapted Bayesian channel estimation algorithms are

introduced. Firstly, the nominal algorithm finds the parameters of the sparse compo-

nents with an ML estimator consisting in an iterative Expectation-Maximization rou-

tine. Then, it estimates a complete hybrid channel estimation using MMSE or MAP

estimators.

Low-resolution methods

In order to reduce sampling frequencies, an analog estimation of the aggregated CIR4

is proposed for communication systems with a target demodulation sampling rate equal

to the frame rate [118]. The resulting pilot waveform assisted modulation (PWAM) is

inspired by the Transmitted Reference signaling.

Channel estimation for non-coherent energy detection (ED) receivers is translated into a

Power Delay Profile (PDP) estimation problem [119]. The system employs multiple pulse

transmissions and a phase offset between the sampling of consecutive pulse repetition

periods in order to obtain a combined higher resolution image of the channel compared

to typical ED resolutions. The image of the channel represents either a low-pass version

of an aggregated PDP5 or the estimated aggregated PDP by equalization of this low-pass

version.

In low-complexity devices, such as the 500-MHz DBPSK transceiver [94] with 1Gbps

direct sub-sampling and “1.5-bit” classical quantization, an image of the CIR can be

obtained after differential digital correlations and accumulation of the correlation results

over repetitions of a PN sequence on the received sequence.

These lower-complexity solutions will not be evaluated in this work because they either

do not provide access to a digital CIR [118] or the channel estimation phase outputs

signals with successive correlated samples [119]. In other cases, the resulting signals

[94] have specific structure and dynamics requiring the design of adapted quantization

metrics.6

4The so-called aggregated CIR is the result of the convolution between the transmitted pulse template
and the CIR.

5An aggregated PDP can be expressed as |p(t) ∗ h(t) ∗ p∗(−t)|2, where p(t) is the transmitted pulse
and h(t) is the CIR.

6Note that we have recently initiated experimental studies regarding the achievable key rates ex-
ploiting this particular type of signals obtained in indoor mobile scenarios. For more details, the reader
should refer to Appendix F.
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Finite Rate of Innovation

Classical sampling and reconstruction theorems put forward by e.g., Shannon, Whit-

taker, Nyquist, state that a band-limited signal can be perfectly recovered by uniform

sampling at a rate higher than two times the maximum frequency present in the signal.

This is actually one possibility for recovering the information contained in a band-limited

signal. Since then, generalized sampling theorems involving for example, band-pass sam-

pling, derivative sampling or super-resolution sampling for image reconstruction, have

been developed and have inspired the extension of sampling theorems to a larger class

of signals: infinite-bandwidth signals with limited energy [120].

Similarly, perfect reconstruction of non-band-limited noiseless signals presenting a finite

number of degrees of freedom per unit of time (i.e., the rate of innovation) is possible

by employing a finite number of uniform samples [121] [122]. Examples of this type of

signals include streams of Diracs or piecewise polynomials sampled with a sinc kernel

at or above their rate of innovation. For example, in the case of a periodic stream of

Diracs, the reconstruction is equivalent to the harmonic retrieval problem: estimation

of the phases and amplitudes of a finite number of exponentials by sampling their sum.

The main idea is to employ a tool from spectral theory, namely an annihilating filter7

applied in the domain of Fourier series coefficients, in order to identify the time instants

of the Diracs and then compute the Diracs’ amplitudes.

To sum up, the reconstruction of h, a T -periodic stream of K Diracs can be achieved

as follows: i) sampling the sparse signal h with a low-pass kernel to obtain M samples

(M ≥ 2K + 1); ii) computing M Fourier series coefficients H[m] of h by solving a

linear system constructed with the M samples; iii) finding the coefficients A[m] of the

annihilating filter of H[m]; iv) finding the roots of the annihilating filter, each of them

giving direct access to the time instants τk of the Diracs; v) computing the Diracs’

amplitudes xk by solving H[m] =
∑K

k=1 xke
−2πjmτk/T .

The described method involves a root finding operation applied to the annihilating filter,

which results in an ill-conditioned problem in the presence of noise. An alternative

subspace method is proposed in order to apply sub-Nyquist FRI sampling to noisy

signals [123] [122], such as received IR-UWB signals with the aim of estimating the CIR

[111]. This solution exploits a matrix composed of the Fourier coefficients X[m], the

fact that its rank is K in the case of noiseless data and the shift-invariance property of

particular subspaces of this matrix.8 More details on the algorithm [111] implemented

7An filter a[n] is said to annihilate the signal s[n] if (a ∗ s)[n] = 0.
8The FRI subspace method is similar to spectral theory algorithms like ESPRIT and MUSIC, which

use the covariance matrix of the Fourier data instead. ESPRIT exploits the shift-invariance property
for particular subspaces of this covariance matrix and MUSIC relies on the orthogonality between the
signal and noise subspaces.
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in our evaluations are given in Section 2.4.3. However, the frequency-domain processing

may be questionable in low-complexity IR-UWB devices operating primarily in the time

domain.

Compressed Sensing

The aforementioned FRI [121] solution for recovering sparse signals using a sub-Nyquist

sampling rate has been initially developed for continuous non-band-limited signals. It

is shown that these signals can be uniformly sampled using a low-pass or band-pass

sampling kernel and reconstructed through a parametric estimation approach achieving

provable performance lower bounds [124]. Compressed Sensing or Compressive Sampling

is based on the paradigm that signals that are compressible in some basis (e.g., images in

the wavelet basis) can be acquired with less samples since the beginning. Unlike FRI, CS

methods have been designed for the discrete case and are adaptable to a larger class of

signals, namely any signal that can be considered sparse in a certain orthonormal basis

called the sparsifying basis. The sampling is usually realized with a non-adaptive random

sampling/sensing kernel in a basis that is incoherent with the sparsifying basis and the

information is reconstructed through nonlinear optimization algorithms minimizing the

l1-norm. Although both methods employ a lower number of samples than classical

sampling methods, the theoretical performance of CS algorithms is probabilistic by

nature and complex to analyze [124].

Compressed Sensing fundamentals Given an orthonormal basis Ψ = {ψn, n =

1, . . . , N}, a signal x ∈ RN is considered to have sparse coefficients θn = 〈x, ψn〉 if

||θ||p ≤ R, 0 < p < 2 , R > 0 [125].9 In the context of CS, this definition is extended

to the l0 “norm”, which represents the number of non-zero coefficients denoted as K �
N , i.e., the orthodox connotation of “sparse”. This condition represents the sparsity

requirement [126], which in the IR-UWB case is equivalent to the aforementioned degrees

of freedom of our signals, i.e., the cardinality of the multipath components.

The second necessary requirement is the incoherence between the sparsifying basis Ψ

and the sensing basis Φ = {φm,m = 1, . . . ,M}, which means that, unlike the signal of

interest x, the sensing kernels φm must have dense representations in Ψ. An example of

incoherent basis pairs is the Dirac basis and the Fourier basis [126]. Random matrices

are deemed to be largely incoherent with any fixed sparsifying matrix Ψ [126]. So by

using a random sensing matrix, CS methods do not need to be adapted to the signal of

interest.

9The lp norm of θ is defined as ||θ||p = (
∑
n |θn|

p)1/p.
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Using M < N samples ym = 〈x, φm〉, the reconstructed signal is x̂ = Ψθ̂ where

θ̂ = argmin
θ∈RN

||θ||1 subject to ym = 〈φm,Ψθ〉, m ∈ {1, . . . ,M}. (2.28)

Note that the sparsity condition is translated into a l1 minimization problem with linear

constraints [126], which is easier to solve than the initial problem. In the noiseless case,

if the signal x is K-sparse in Ψ and M ≥ c ·µ2(Φ,Ψ) ·K · log(N/δ), where c is a constant

and the function µ is a measure of the incoherence between two basis, the solution to Eq.

(2.28) is exact with probability 1 − δ. It can be found by the Basic Pursuit algorithm

(BP) or greedy algorithms such as Matching Pursuit (MP) or Orthogonal Matching

Pursuit (OMP).

In the noisy scenario or when the signal x is nearly sparse (i.e., the N−K coefficients are

small but not exactly zero), an additional condition is imposed: the Restricted Isometry

Property (RIP). In order to be able to reconstruct K-sparse signals θ from the samples

y = Φx+z = ΦΨθ+z, where z is the noise term, these vectors should not be in the null

space of the matrix ΦΨ [126]. Linear programming methods for the noisy case include

Basic Pursuit Denoising (BPD), which adds a penalty term to the cost function in Eq.

(2.28).

IR-UWB Compressed Sensing algorithms The received IR-UWB signal can be

considered sparse in a “pulse” basis, i.e., a dictionary composed of delayed pulses

[107]. By random time sampling at an equivalent M/N = 0.36 and MP reconstruc-

tion, both CS-based proposed receivers (a Rake-like receiver using CIR estimations and

a correlator-based receiver using aggregated CIR estimations) outperform the correlator-

based receiver described in [118] in terms of BER. The described CS algorithm for CIR

estimation with a dictionary of delayed pulses will be used in our evaluations.

In a spread spectrum CS based approach for IR-UWB CIR estimation [127], the authors

propose to modulate the received IR-UWB signal with a pseudo-random sequence in

order to spread the spectrum. The result is then randomly sampled in the Fourier

domain and the received signal is reconstructed using a dictionary of delayed pulses via

BPD l1 minimization. An additional frequency sensing technique for ToA and channel

estimation and a new reconstruction algorithm inspired by OMP are proposed in [128]

and compared to the aforementioned ones [107] [127]. This new CS solution achieves a

trade-off between path detection accuracy and convergence speed.

The CS sensing framework can be combined with the noise statistics formulation of the

ML estimator from [113] in order to achieve reliability performance in terms of BER

close to that of the ML estimator but at a lower sampling rate [129]. The proposed
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CS-ML estimator also shows better performance than the MP algorithm in terms of

reconstruction error.

Sparse ultra-wideband channel estimation can be formulated within a Bayesian Com-

pressed Sensing (BCS) context as well [130] [131]. The BCS method [132] replaces the

traditional l1 minimization with a MAP estimator, which takes into account the noise

statistics within the likelihood function and models the sparsity information as, e.g.,

Laplacian or Gaussian priors on the searched CIR. BP l1 minimization is compared to

BCS for criteria like execution time and reconstruction error [130] and additionally for

SNR regimes and sparsity structure of the channel [131].

It should be noted that studies like [133] [131] investigate the impact of channel sparsity

on CS estimators concluding that reasonable performance can be achieved for CM1 or

CM2 models. However, CS estimators could be unadapted to CM8-like channels (i.e.,

industrial NLOS) with denser multipath structure. Moreover, recent work on CS-based

receivers investigates the effect of different types of noise (sky or amplifier noise) and

CS sensing architectures (serial or parallel) on the achieved BER [134]. It is shown

that CS signal detection with correlated noise is outperformed by the uncorrelated noise

situation.

2.4.2 System model

We consider two communicating parties (A and B) and a received signal and channel

models similar to the ones described in Section 2.2.1:

yu(t) = (h ∗ p)(t) + wu(t) (2.29)

h(t) =

K∑
k=1

xkδ(t− τk) (2.30)

where u ∈ {A,B}, p(t) is the transmitted pulse waveform with central frequency fc and

bandwidth B, h(t) is the reciprocal CIR with K multipaths of amplitudes xk and excess

delays τk generated according to the IEEE 802.15.4a, wu(t) is a random processes of

zero-mean Gaussian white noise with double-sided power spectral density N0/2, which

is filtered in the band B of the transmitted signal and has variance σ2
w = N0/2 × 2B.

As before, we define the SNR as:

SNR =
1
T

∫ T
0 (h ∗ p)2(t) dt

σ2
w

(2.31)

We denote the sampled version of y(t) at sampling rate Fs as y and its length as M .

After sampling, the signal is processed independently at A and B with three different
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estimators in order to generate CIR estimations. Next, we detail the considered channel

estimators.

2.4.3 Channel estimators and pairing issues

Channel estimators

Matched Filter estimator (MF) Given a received signal and a pulse template,

the MF algorithm [110] iteratively detects and substracts the most representative paths

found in the signal. The operation is based on the output of the cross-correlation between

the received signal and delayed versions of the pulse template, which gives access to the

estimated path delay. The channel gains are jointly readjusted at each iteration.

Finite Rate of Innovation estimator (FRI) For FRI evaluation, we implement

the subspace method from [111]. Based on an a priori targeted number of samples M ,

the received signal is filtered with a band-pass filter and sub-sampled. Then, the Fourier

Transform is applied to y and the M FFT coefficients Ĥ of the searched signal ĥ are

obtained after division by the FFT coefficients of the pulse. The resulting vector is

arranged into a P ×Q Hankel matrix H10 with P +Q− 1 = M , P,Q ≥ K. The matrix

H, which has a a rank equal to K in the noiseless case, is decomposed with an SVD

operation and divided into a signal subspace of dimension K indexed by s and a noise

subspace indexed by n:

H = UsΛsv
T
s + UnΛnv

T
n (2.32)

The matrices U and v satisfy the shift-invariance subspace property, i.e., they have a

Vandermonde structure11 dependent on e−2πjτk/T . This allows the computation of τ̂k

after matrix manipulations on vs or Us. The path amplitudes x̂k are then estimated

from:

Ĥ[m] =
K∑
k=1

x̂ke
−2πjmτk/T , ∀m ∈ {1, . . . ,M} (2.33)

Compressed Sensing estimator (CS) The CS estimator inspired from [107] uses

a random standard Gaussian sensing matrix Φ in order to acquire M noisy samples

y = Φy. The sparsifying matrix Ψ contains the dictionary of delayed pulses with an

arbitrary temporal resolution for the delay (e.g., 0.5 ns in our case). Note that this is a

digital resolution and is independent of the ADC resolution used for signal acquisition.

Then, a variant of the Matching Pursuit algorithm is implemented based on: y = ΦΨĥ.

10A Hankel matrix is a matrix with constant skew diagonals.
11A Vandermonde matrix is a matrix with the terms of a geometric progression in each row
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This algorithm is similar to the MF estimator with the exception that the processing

is realized in another domain and the amplitudes are not readjusted at every path

detection. Also, the random sensing matrix should be the same for the bidirectional

channel estimations.

Pairing of estimated multipath components

Based on our observations, an estimated CIR ĥu can contain misdetected paths or fail to

detect paths that are detected on the other side of the link (Figure 2.17(a)). In order to

avoid complete desynchronization of the sequences meant for quantization, we propose

an heuristic pairing algorithm that involves the public exchange of the estimated excess

delays associated with the estimated paths.12 This means that the delay information

cannot be used for quantization anymore and that schemes, such as HIST or DIV, cannot

be applied after pairing. The pairing algorithm is detailed in Alg. 2, where x̂u is the

vector of estimated path amplitudes at u, t̂u is the vector of estimated path delays, and

au is the vector of path amplitudes after pairing. The number of estimated paths is

denoted as K in the following.

Data: x̂A, t̂A, t̂B

Result: aA

initialization pairing vectors vA and vB ;

for i = 1, . . . , K do

find t̂B[j] closest to t̂A[i];

do vA[i] = j;

find t̂A[j] closest to t̂B[i];

do vB[i] = j;

end

find I = {i|1 ≤ i ≤ K, vB[vA[i]] = i} ;

set aA = x̂A[I] ;

Algorithm 2: Path pairing algorithm for CIR estimates (at A)

2.4.4 Performance evaluation

For our evaluations, we employ the following parameters and estimators:

12We do not use the traditional Hungarian algorithm for the complete assignment problem because
we do not necessarily need to pair every single path, but rather we do not pair some of the paths if the
cost of the resulting pair is too high.
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• Signal and channel parameters: fc = 4.5 GHz, B = 1 GHz, 1000 channel realiza-

tions according to the IEEE 802.15.4a CM1 model;

• Estimators: MF (a pseudo-analog matched filter estimator at Fs = 100 GHz),

MF10 (an MF at Fs = 10 GHz), MF20 (an MF at Fs = 20 GHz), CS and FRI at

the same Fs ∈ (3.6, 3.7) GHz;13

• Quantization: an arbitrary two-bit quantization scheme with uniformly distributed

codeword probabilities applied to the concatenated values issued from the CIR

estimation phase (before or after pairing).

We evaluate the reciprocity before quantization through the inter-estimate RMSE metric

from Eq. (2.34), where x̂u can be replaced by âu for the RMSE after pairing. This metric

characterizes only the reciprocity errors regardless of the channel estimation performance

(e.g., a similarly misdetected path on both sides of the link does not impact the key

generation performance). For comparison purposes, the RMSEA,B for each estimator is

normalized with respect to the RMSEA,B of the MF estimator. After quantization, we

also compute the mean bit agreement ratio obtained after averaging the bit agreement

of the quantized sequences for each channel realization.

RMSEA,B = Eh(t)[RMSE(x̂A, x̂B)] = Eh(t)[

√∑K
k=1 (x̂k,A − x̂k,B)2

K
] (2.34)
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Figure 2.15: Illustration of an IEEE 802.15.4a true multipath channel

Figures 2.16-2.17 show examples of the reconstructed signals from various estimators

and the corresponding estimated bidirectional CIRs for an arbitrary channel realization

(Figure 2.15). The bidirectional CIRs are measured at A an B and are denoted by

different colors. The number of estimated multipath components is K = 8 and the SNR

is deliberately high for better visualization (SNR = 25 dB). The reconstructed signals

(Figure 2.16) are shown only for one side of the link because there is no significant

13Note that this sampling rate corresponds to 5 times more the number of minimum samples needed
for a noiseless FRI estimator using band-pass sampling.
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(a) “Analog” matched filter (MF)
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(b) 10 GHz matched filter (MF10)
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(c) Compressed sensing estimator (CS)
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(d) Finite Rate of Innovation estimator (FRI)

Figure 2.16: Illustration of initial and reconstructed “analog” signals with various
estimators

difference between the bidirectional received signals. The shift experienced in Figure

2.16(c) can be corrected based on the pulse template length and is therefore not a

limitation of the CS method.

As expected, from the reconstruction point of view, the MF estimator performs the best

(Figure 2.16) and exhibits the most “natural” CIR structure (Figure 2.17). However, it

is also the most sensitive in terms of reciprocity of the paths (Figure 2.17(a)) because of

several polarity inversions, which occur at the matched filter output, and one misdetected

path. More details on the impact of the various sampling rates on the MF estimators

are provided in the next section.

We also observe that the FRI estimator (Figure 2.17(d)) produces reciprocal excess

delays but relatively noisy amplitude estimates. This behavior could be explained by the

harmonic approach of initially retrieving the excess delays based on a subspace method,

which seems favorable to reciprocity, and then computing the corresponding amplitudes.

Although the order of the strongest FRI-sensed paths is reciprocal (SVD operation and

signal space detection), sometimes small errors appear on the excess delays and are later

translated to polarity inversions in the amplitudes computed in the time domain.
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(a) “Analog” matched filter (MF)
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(b) 10 GHz matched filter (MF10)
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(c) Compressed sensing estimator (CS)
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(d) Finite Rate of Innovation estimator (FRI)

Figure 2.17: Illustration of the estimated bidirectional CIRs with various estimators

Given the true dense channel from Figure 2.15, we conclude that all the estimators fail in

absolute to retrieve the true multipath components because of the inherent limitations of

the pulse resolution. However, they are able to recover different images of the channel.

These images can be reciprocal and have different structures that are characteristic

to each estimator and its parameters (e.g., sampling frequency, extraction algorithm,

random sensing matrices for CS).

Reciprocity evaluation

In this subsection, we evaluate the RMSEA,B for two configurations: fixed SNR and

variable K and fixed K and variable SNR.

In Figures 2.18 and 2.19, we plot the normalized RMSEA,B at fixed SNR values and

variable number of estimated paths before and after pairing. The results for FRI are

not shown on the graphics because of their extended range between 0.7 and 34 before

pairing and 0.7 and 26 after pairing, which means that FRI estimates could be too non-

reciprocal, at least in comparison with the reference MF estimator. All methods perform

better at the highest SNR value and for a smaller number of paths, with CS having the
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Figure 2.18: RMSEA,B before pairing at low and high SNR: 5 dB (L) and 30 dB (H)
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Figure 2.19: RMSEA,B after pairing at low and high SNR: 5 dB (L) and 30 dB (H)

best performance for most regimes. The proposed pairing algorithm contributes to the

decrease in RMSEA,B for all regimes and to the beneficial uniformity of the RMSEA,B

across K, while keeping a relatively high number of estimated paths (Figure 2.20).

Next, we fix K to the maximum number of detectable paths with the present sparse

implementations (i.e., 18) and we look at the reciprocity evolution with the SNR (Figure

2.21). We conclude that before pairing the methods have equivalent performance, but

after pairing an obvious gap is created between the CS and the MF estimators. Also,

the value of the normalized RMSEA,B is systematically lower than 1, meaning that in

terms of reciprocity the ranking of the methods is the following: CS, MF10 and MF20,

and MF.
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Figure 2.20: Mean number of paths after pairing: 5 dB (L) and 30 dB (H)
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Figure 2.21: RMSEA,B before and after pairing (P) for K = 18

This seems counter-intuitive at first because higher sampling rates should mean bet-

ter performances, but this result becomes more explicit when recalling the illustrative

example from Figure 2.17. MF methods, especially the ones at higher Fs suffer from

polarity inversions of certain path estimates. This is due to noise and it happens sys-

tematically when the error on the estimated delay is of the order of an odd multiple of

1/2fc. In other words, any inner oscillation of the unitary waveform (i.e., at the center

frequency fc) may be misinterpreted as the center of this waveform because of noise.

MF methods with higher temporal resolutions are more sensitive to these phenomena

since the maximum of correlation might not be detected in the same way on both sides

of the link.

Nevertheless, the advantage of lower-sampling methods in terms of reciprocity does not
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come without a drawback. Regarding the visual structure of the estimated CIR from

Figure 2.17, when the channel is represented less faithfully, its inherent randomness is

less well captured, so sparse-sampling methods could suffer from randomness defects.

Bit agreement evaluation

In order to confirm our previous findings and verify the prohibitively low reciprocity of

FRI estimates, we plot the average bit agreement ratios for all the estimators at K = 18

before pairing (Figure 2.22) and the respective bit agreement gains after pairing (Figure

2.23).
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Figure 2.22: Mean bit agreement before pairing for K = 18

The FRI RMSEA,B results varying between 0.5 and 0.6 confirm that the implemented

FRI estimator is less stable or too sensitive in terms of noise. Although the phenomena

involved in the FRI estimation process are less transparent because it uses spectral

methods, the presumed noise sensitivity indicates that temporal methods should be

preferred from a reciprocity point of view for estimates of temporal signals.

Also, the estimator ranking observed in Figure 2.21 still holds for the bit agreement

results as shown by the results of the gain after pairing (Figure 2.23). It can also be

noted that the pairing has a powerful impact especially for CS at medium SNR values

because at lower SNR pairing is not sufficient, while at high SNR it is less needed.

2.4.5 Summary

In this section, we examined the reciprocity degradation incurred by realistic CIR es-

timates. We compared three estimators: a high-resolution matched filter requiring
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Figure 2.23: Mean bit agreement gain after pairing for K = 18

Nyquist or higher sampling rates, a compressed sensing algorithm, and a spectral method

for sparse signal reconstruction. The MF methods are simple to implement, but require

high sampling rates and the reciprocity is often deteriorated by misdetected paths. The

FRI estimator has low performance in noisy cases and its Fourier-domain implementa-

tion along with the SVD operations require important computational capabilities. CS

estimates achieve acceptable reciprocity but there are still open questions concerning

the associated receiver architecture (e.g., implementation of the sensing part, choice and

sharing of the random sensing matrix). Finally, we propose a pairing algorithm based

on the exchange of estimated excess delays in order to avoid the mismatching caused by

the misdetected paths.

This part of our work has been inspired by the study of the theoretical performance

of unbiased IR-UWB channel estimators [135]. The authors derive the expressions of

the Cramer-Rao Lower Bounds (CRLB) characterizing the accuracy of excess delay

and amplitude estimates given the true multipath channel and a certain pulse used for

probing. Initially, we aimed at creating a similar “CRLB model” meant to describe

the theoretical reciprocity performance, equivalent of the estimation accuracy [135],

and compare it to the performance achieved by various estimators. This would mean

explaining only the noise effect on a realistic bidirectional channel estimate. Because of

pulse interference, a true multipath component could be wrongly but similarly estimated

by the two users, which means that it would still contribute to the mutual information

for key generation. As an example, if there is pulse overlapping because two paths

have very close time of arrivals (e.g., reflections on two close-by pieces of furniture),

an estimator cannot “solve” both of them and there would certainly be an error with

respect to the true channel. However, since both estimators will do the same error, the
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reciprocity of the estimates would not be affected.

This proved to be a difficult problem because of the assumption of realistic pulse in-

terference, which was the core of the phenomenon we wanted to describe. Typically,

this assumption is avoided in theoretical studies regarding the performance of unbiased

estimators [135] or the mutual information between bidirectional IR-UWB channels for

key generation [77]. Moreover, when considering the pulse interference phenomenon, it

is admitted that, because of noise, the bidirectional estimates will potentially contain

false alarms or missed paths. This leads to an assignment or pairing problem, which

automatically implies additional reconciliation procedures. We conclude that the study

of the reciprocity performance of channel estimates is dependent on the chosen recon-

ciliation procedure and that the theoretical performance of joint probing-reconciliation

schemes becomes even more complex than the initial aim of the “CRLB” reciprocity

model.





Chapter 3

Public discussion strategies

In narrow-band communications, the radio signal perceived by an eavesdropper situated

at more than a few wavelengths of one of the legitimate users is uncorrelated with the

main channel signal [136]. However, in wide-band communications, notably in IR-UWB,

the spatial decorrelation property of channels does not present the same behavior with

the distance: it depends on the considered radio characteristic (e.g., CIR, averaged

CIR, etc.) as well as on the propagation environment [29]. The mentioned study on the

spatial correlation of IR-UWB channels [29] exploits experimental data from the same

measurement campaign [95] [79] presented in Section 2.2.

The acquired radio signal of the eavesdropper and the information that transits on the

public channel represent the leaked information impacting the immunity to eavesdrop-

ping attacks. The reconciliation phase from the previous key generation protocol [95]

consists in the exchange of the position tables followed by Reed-Solomon error correction

(see Section 2.2.2). The error correction scheme can be adapted to correct more or less

mismatched bits in order to guarantee an acceptable compromise between bit agreement

and security. On the contrary, the table exchange is a fixed protocol specification and

the information transmitted on the public channel (i.e., the indexes of the extracted

samples) represents the excess delay information of the significant channel coefficients.

In this chapter, we consider IR-UWB signals obtained by deterministic Ray-Tracing

simulations, which, contrary to the statistical IEEE channel realizations, can model the

location-dependent characteristics and therefore, the spatial correlation of the received

IR-UWB signals. We aim to investigate the security impact of the public exchanges

proposed in previous studies [95] when employing threshold-based synchronization and

we propose alternative reconciliation strategies that limit or mask the publicly exchanged

information [98]. Before discussing the system model and the main results, a short state

of the art of practical reconciliation schemes is presented.

81
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3.1 State of the art: information reconciliation

As already mentioned, we consider that a practical information reconciliation phase

consists of two steps: i) a preliminary public discussion for sharing quantization-related

information (e.g., indexes of dropped samples or information for asynchronous quan-

tization); ii) error correction, after which the bits should be perfectly identical. We

recall that all public exchanges are considered to be authenticated, which means that

an attacker cannot tamper with the transmitted information or inject false information.

Preliminary public discussions are highly dependent on the key generation protocol,

so we will focus on the one proposed in [95], which involves exchanging the indexes

of the dropped samples after quantization. Whereas for consecutive uncorrelated RSS

measurements, such exchanges do not offer any advantage to an eavesdropper, in the case

of directly sampled IR-UWB CIRs, samples are usually correlated and this information

can provide indications about the structure of the legitimate signal. It is therefore

preferable to protect this information if possible.

Although in this work we only investigate the first step of reconciliation, a short classi-

fication of error correction schemes is also presented for completeness purposes. There

are two main types of error correction: iterative and non-iterative error-correction tech-

niques. The iterative Cascade protocol employed in [27] is similar to the information

reconciliation step of QKD (Section 1.2.2). It involves random permutation of the bits,

divisions in small blocks and iterative exchanges of block parity information. We classify

the non-iterative error-correction techniques based on their “philosophy”.

• Distributed source coding approach or coding with side information. Typically,

Alice maps her observations to codewords extracted from a codebook divided in

cosets. The property of the coset organization is that the minimum distance be-

tween the elements of the cosets is maximized (i.e., the code”’words in a coset

are “very” different). The indexes of the cosets are sent to Bob who uses them

along with his observations to find the corresponding codewords. Possible imple-

mentations for this approach include: i) coset assignment through Reed-Muller

block codes or trellis codes [77]; ii) LDPC syndrome computation by Alice and

syndrome-based decoding by Bob before or after quantization [67] iii) classical

quantization of the measurements and transmission of the difference between the

measured and the quantized values over the public channel [137]. In the case of

signal envelope quantization in IR-UWB [138], it is suggested to add a stage of

bilateral independent LDPC decoding for better key agreement before reconcilia-

tion.
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• Channel coding approach. After parallel quantization, Alice computes the parity

check for her sequence with an error-correction code (e.g., Reed-Solomon codes

[95]) and sends it to Bob over the public channel. If the number of errors is not

too large comparing to the error correction capabilities of the employed code, Bob

can now correct the mismatches of his own binary sequence using the received

parity information. For benchmarking purposes, we will employ the same error-

correction scheme as in [95].

Other more complex options for key reconciliation include compressive sensing algo-

rithms, if we consider the difference between the users’ quantized sequences as a sparse

vector [139] or neural networks with specific training algorithms corresponding to typ-

ical bit errors [140]. The same study [140] proposes a second reconciliation scheme for

key generation from signal fades of envelope magnitudes: generating a pseudo-random

bit sequence from the average fade length and using it as a mask before applying error

correction. Similarly to our proposed solution POSToF, this method also adds a supple-

mentary layer of security against eavesdropping attacks. However, the mentioned work

does not consider the impact of correlated channel observations of an attacker and it is

specific to key generation procedures based on signal fades. Our public discussion strat-

egy POSToF does not operate at the error correction level, employs an external source

of reciprocal information (i.e., not the quantized signal) and it can also be adapted to

any key generation scheme involving public exchanges of sample indexes.

3.2 System model

We employ the same system model as in Section 2.2.1, to which we add an eavesdropper

situated close to Bob (Eve, denoted as E). The signal received by E during the channel

probing between A and B can be expressed as:

yE(t) = (hAE ∗ p)(t) + wE(t) (3.1)

where the channel seen by E, hAE , has a certain level of correlation (presumably small)

with the legitimate channel.

Eve is assumed to know all the physical parameters of the transmission (synchronization

method, pulse waveform, duration of observation window) as well as the public protocol

parameters for key generation. The attacker performs the signal acquisition simultane-

ously with the legitimate parties, applies the same processing techniques and extracts

her own key using the bit extraction algorithm described in Section 2.2.2. She will then

eavesdrop on the public exchanges between the two parties and exploit the information
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as explained in Section 3.5. The missing information will be replaced with randomly

generated bits.

This is a basic attack strategy which relies on the unmodified acquired signal and is

straightforward to implement. Other more evolved strategies may rely on the received

signal to infer the missing bits or even on deterministic ray-tracing predictions given

partial knowledge of the physical environment and knowledge of the legitimate positions

[96]. The mentioned study [96] concludes that an attacker equipped with a ray-tracing

simulator is not able to entirely recreate the legitimate signal and that keys can be

generated with the help of the diffuse components. Our focus herein is different in

the sense that we use ray-tracing signals for the legitimate users also and we aim to

investigate the immunity to a passive physical layer attack when employing only the

“less” diffuse part of the signal, which would be a worse-case scenario from the signal

point of view. Note that the ray-tracing simulator is used for data acquisition purposes

only, not for the attack itself.

Round Trip - Time of Flight and synchronization

The Round Trip-ToF (RT-ToF or simply ToF) is also a reciprocal radio characteristic

between A and B and it will be used to improve the secrecy of public exchanges during

the reconciliation phase. This quantity is usually measured through cooperative hand-

shake protocols, which are based on the time of arrival of exchanged packets [135]. For

our simulations with ray-tracing signals, we will use noisy estimates of the ToF relying

on the channel leading edge detection, defined by ty(t)>yth from Eq. (2.10) as introduced

in Section 2.2.1. The ToF measured by A and B (TAf and TBf ) will be similar to the

ToF measured by E using the A-E link (TEf ) because we deliberately consider the worst

case scenario when the attacker is close to B. For each participant, the measured ToF

quantity can be transformed in number of samples :

u : Nu
ToF = T uf · Fs (3.2)

with u representing A, B or E.

The accuracy of the level-crossing synchronization depends on the SNR, which impacts

both the key generation algorithm, by altering the reciprocity of the samples, and pos-

sible ToF-based reconciliation strategies, by altering the ToF estimation.
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3.3 Limited public exchanges

We suggest, first of all, a bin table exchange (BIN) instead of the position (i.e., sample

index) table exchange in order to reduce the public information. A bin is an interval of

several samples that is defined beforehand for both sides.1

Instead of exchanging tables containing the indexes of the extracted samples, A and

B exchange tables containing the occupancy of each bin, i.e., the number of samples

above the final detection threshold in each bin. For illustration purposes, consider an

observation window of Wobs = 50 samples, a bin length of ∆bin = 10 samples, and A’s

quantized samples with indexes [5, 6, 12, 35, 37, 39, 45] in Wobs. The resulting table

transmitted by A over the public channel is [2 1 0 3 1]. After the exchange, A and B

drop all the bits corresponding to the bins for which the occupancy is different.

3.4 Masked public exchanges

As the previous solution is expected to work in rather high SNR conditions, we suggest

another approach for sending information over the public channel by masking or encoding

it with a quantity (expressed in number of samples) equivalent to the independently

measured ToF. The exchanged encoded tables are:

u : Eu ≡ (Pu +Nu
ToF ) mod Wobs (3.3)

with u representing A or B.

In order to recover the original index table of the other user, A and B try to decode E
using their own NToF and P. We consider two decoding strategies:

• POSsToF where A and B assume perfectly symmetric ToF estimates (i.e. NA
ToF =

NB
ToF ) regardless of the actual quality/symmetry of their estimates and decode as

follows:

u : Dv ≡ (Ev −Nu
ToF ) mod Wobs (3.4)

where (u, v) ∈ {(A,B), (B,A)} and Dv stands for the positions extracted by v and

decoded by u.

• POSaToF where A and B try to infer the other’s NToF by iteratively checking

the values in the neighborhood of their own NToF in order to compensate for

plausible asymmetric measurement biases. For each value, they decode in the

1Note that the bin definition is the same as in Section 2.2.3.
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same way as before but choose the NToF that maximizes the number of common

extracted indexes, assuming that similar ToF measurements (and thus leading

edges’ alignment) are likely to generate more common indexes :

u : Dv ≡ (Ev − N̂v
ToF ) mod Wobs (3.5)

where N̂v
ToF = arg max

NToF

|Pu ∩ Dv(NToF )|.

After estimating each other’s index table, A and B keep only the bits from the estimated

common indexes. Contrary to POS, where the indexes are directly exchanged, this time

there is no guarantee that the legitimate users estimate the common indexes correctly.

However, the length of the final sequence is the same on both sides for POSsToF , as it can

be seen from Eq. (3.6), where d = NB
ToF −NA

ToF and the second equality is due to sets’

properties. The same is not always true for POSaToF because of the asymmetrical nature

in the errors made by A and B when using the estimation in Eq. (3.5). This makes

POSaToF vulnerable to key length issues even if, at first sight, it seems more robust to

measurement noise.

|PA ∩ DB| = |PA ∩ (PB + d)| = |(PA − d) ∩ PB| = |DA ∩ PB| (3.6)

3.5 Performance evaluation

Attacker strategy

The attacker E in the vicinity of B measures the channel between A and herself (yE(t))

and the ToF on the same link (TEf ). She obtains a bit sequence from the quantization

of yE [n], which she uses along with the public information to guess the key generated

between A and B. We assume that the attacker plays a passive role in the key generation

procedure (i.e., she does not inject/modify packets, her final aim being the eavesdropping

of the communication between A and B), but she has nonetheless the advantage to

exchange packets with A in order to measure the ToF. These measurements along with

the proximity to Bob would allow Eve to exploit spatial correlation effects.

In the case of POS, Eve will only keep the quantized bit values corresponding to the

common indexes between A and B and guess the missing ones by randomly choosing

between equally distributed “0” and “1”. For the BIN protocol, she will divide her

observed signal samples into bins, select the bits corresponding to the common bin

occupancy of A and B, and guess the missing ones. If her bins do not match the

occupancy advertised by A and B, she will just add or delete bits at the end of the bins.
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For POSToF variants, the attacker will either decode the position tables using her own

NToF or try to infer them by maximizing the number of common positions between A

and B based on Eq. (3.5). After decoding, she will continue with the same strategy as

for POS. The attacker will have no clear indication about the number of bits conserved

by A or B for POSToF .

Simulated signals

The used data are generated by a deterministic IR-UWB ray-tracing simulator using

a reference indoor office environment [92]. The simulator gives access to (x ∗ h)(t) for

900 different Tx/Rx positions taken on a regular grid, which are then used to generate

y(t) by adding noise. The positions of A and B are chosen randomly on the grid and

the position of E as close as possible to that of B (i.e., at 1 m). Ray-tracing signals

can help quantifying the impact of spatial correlation on the generated keys because the

generated signals depend on both the environment and the Tx/Rx locations. They are,

however, more limited in the number of multipath components than statistical channel

realizations (Section 2.2) because they mainly capture the most significant reflexion and

diffraction phenomena. As expected, the diffuse components are captured less reliably

because they usually derive from the details of the building layout or the complexity of

the materials.

The sampling frequency of the available ray-tracing data is fixed at approximately 18

GHz and the pulse has a bandwidth of 2.5 GHz at a central frequency of 4.5 GHz. The

retained metrics for evaluation are the key agreement ratio, mean successful key lengths,

mean bit agreement between legitimate users (mean legal bit agreement), and mean bit

agreement ratio with a potential attacker (illegal mean bit agreement), defined according

to Section 2.2.4. If the keys have different lengths, the bit agreement ratio is considered

to be 0. The standard deviations are computed for the key lengths and the legal/illegal

bit agreement ratios.

Results

We compare the initial key generation protocol with position-based public discussion

(POS) with the same quantization algorithm followed by the newly introduced variants

of the public discussion phase (BIN, POSaToF and POSsToF ). The first tests have been

performed using typical algorithm parameters (δ = 10 for the quantization process in

all the algorithms and ∆bin = 0.25 ns for BIN2).

2∆bin (now expressed in ns for simplicity) corresponds to approximately half of the pulse duration
in this case.
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Figure 3.1: Key agreement. Parameters: δ = 10 and ∆bin = 0.25 ns
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Figure 3.2: Mean legal bit agreement. Parameters: δ = 10 and ∆bin = 0.25 ns

Figure 3.1 shows that POSaToF is not a reliable solution for generating identical keys,

which is later confirmed by the statistics on the legal bit agreement: a small mean value

(Figure 3.2) and a large standard deviation with approximately the same order as the

mean. This means that maximizing the number of common positions is not a good

criterion to estimate the exact ToF of the other user because it leads to keys of different

lengths, which are considered to have a bit agreement of 0. This explains the large

variance on the legal bit agreement for POSaToF while the standard deviations for all the

other algorithms are between 0.06 and 0.22.

Both BIN and POSsToF improve the mean illegal bit agreement (Figure 3.3 where the

associated standard deviations are approximately 0.13 for all the algorithms). POSsToF

is better than POS and BIN over all SNR values and moreover, its mean value of 0.5 is
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equivalent to a blind guess of the attacker. It also yields a higher mean successful key

length (Figure 3.4) because it does not drop bits by groups like BIN. For SNR values

between 5 and 30 dB, the standard deviations of BIN key lengths span from 27 to 48

bits while those for POSsToF are around 40-42 bits. Since the key length statistics (mean

and standard deviation) are the same for POS and POSsToF , we conclude that the key

lengths depend more on the quantization algorithm and the channel itself than on the

public discussion.
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Figure 3.3: Mean illegal bit agreement. Parameters: δ = 10 and ∆bin = 0.25 ns
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Figure 3.4: Mean successful key length. Parameters: δ = 10 and ∆bin = 0.25 ns

Finally, we look at the effect of δ and ∆bin on the performance of the reconciliation

schemes at median SNR (15 dB). When increasing δ from 5 to 20, which corresponds

to the extraction of more bits because of a lower final detection threshold, the key

agreement ratio decreases almost linearly for POS, POSsToF and BIN variants (Fig 3.5).

When analyzing supplementary values of ∆bin between 0.1 ns and 0.65 ns, we conclude
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that the key agreement ratio for BIN changes its behavior: it decreases almost linearly

with δ at low ∆bin and it presents an optimal δ for higher ∆bin. The lower key agreement

values at high ∆bin and low δ are due to the empty-key phenomenon (i.e., after the public

discussion phase, there are no common bins left).
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Figure 3.5: Key agreement at SNR=15 dB

The mean illegal bit agreement for POS and the BIN variants decreases with δ (Figure

3.6). The differences between POS and BIN are, however, smaller than the standard

deviation of the samples which can be between 0.2 and 0.1. POSsToF presents similar

standard deviations but its mean is always approximately 0.5, which shows that it is a

more efficient public exchange method for all δ values.

5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

Iteration parameter (δ)

M
ea
n
il
le
g
a
l
b
it
a
g
re
em

en
t

 

 

POS
∆bin = 0.1 ns
∆bin = 0.15 ns
∆bin = 0.5 ns
POSs

ToF

Figure 3.6: Mean illegal bit agreement at SNR=15 dB
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3.6 Summary

In this section, we showed that signal spatial correlation and public information can

help a passive attacker guess parts of the shared secret key between two legitimate users

quantizing a directly sampled IR-UWB channel response according to [79] under more

realistic synchronization assumptions. Among the proposed more discrete reconciliation

methods, BIN can be easily adapted to the SNR conditions by varying the bin size,

but it is less efficient at large bin sizes because it implies dropping bits by large groups.

POSsToF proves to be efficient (i.e., in terms of key length and also for achieving an

optimal mean illegal bit agreement of 0.5) since it only hides the publicly exchanged

information by using the ToF as a mask. Moreover, none of these methods increases the

public discussion overhead in terms of exchanged packets. Since we use ray-tracing data

for our simulations, our results would be valid for realistic IR-UWB signals from simple

environments with limited multipath and solutions such as BIN or POSToF would be

useful for adding a supplementary layer of protection against eavesdropping in these

cases.





Chapter 4

Cooperative physical layer key

generation

The previous chapters focused on the exploitation of the physical radio layer to generate

symmetric keys over single point-to-point links. The channel can be also probed over

successive transmissions for obtaining longer keys by concatenation but the performance

is dependent on the channel coherence time. Therefore, an elementary issue for physical

layer key generation is how to gather more entropy from channel measurements in a

given static scenario. This leads to the idea of extending the key generation process to

several nodes in order to exploit more physical links (cooperative/multi-link strategy)

and/or to generate a group key (contrary to a point-to-point key). From a practical

point of view, the solutions should be scalable, adapted to ad hoc scenarios and should

avoid the high level complexity issues of classical key distribution techniques (e.g., key

pre-distribution, numerous packet exchanges, etc.).

Some of the key generation models have been adapted to cooperative scenarios involving

several nodes, either to reinforce the generated pairwise keys or to issue a common group

key (i.e., shared by more than two nodes). In this chapter, we investigate key generation

from IR-UWB multipath channels according to the source model. We propose a new

method to generate group keys within cooperative scenarios, while exploiting all the

available physical links in a full mesh topology and reducing over-the-air traffic. The

main idea consists in adjusting the IR-UWB signals usually transmitted for channel

probing so that a receiving node has access to non-observable channels corresponding to

its non-adjacent links.1 This operation leads to a deconvolution problem, for which we

investigate various solutions.

1Non-adjacent links are links between other nodes in the network

93
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The present chapter starts with an overview of the main cooperative key generation

methods. Then, a general state of the art protocol named CKD (Cooperative Key Dis-

tribution) is presented for comparison purposes with the the proposed method entitled

CKG (Cooperative Key Generation). For the latter, we detail the signal processing

algorithms involved in computing the optimized transmitted signal. Firstly, we show

that the maximum-likelihood (ML) approaches to the deconvolution problem are not

stable with respect to imperfect channel estimates. Then, we introduce a parameter-

ized maximum a posteriori (MAP) solution and we analyze two automatic methods for

parameterization: Cross Validation (CV) and Expectation Maximization (EM). Finally,

the protocol is analyzed in terms of traffic complexity and the key length gains are

assessed through simulations.

4.1 State of the art: cooperative key generation

The secret key capacities for the source model with multiple terminals including a sub-

set of helpers, various extents of an eavesdropper’s knowledge, and unrestricted public

discussion are characterized in [141]. First, the secret key capacity when the eavesdrop-

per only observes the public exchanges without having any side information regarding

the source is shown to be closely related to the multiterminal source coding problem

with no secrecy constraints. Then, the expression of the secret key capacity when the

eavesdropper wiretaps a subset of the helpers is also derived.

Similar studies [142] [143] extend the source emulation channel model to include a public

channel eavesdropper and multiple users. The latter can be classified as: i) active

users that want to generate a secret key per group [142] [143] or per sub-group [142]);

ii) untrusted helpers, whose channel inputs and/or outputs can be wiretapped by the

eavesdropper; iii) trusted helpers. The active users can be either senders or receivers

[142] or both [143]. The results consist in lower and upper bounds for the secret key

capacities.

Multiterminal or cooperative secret key generation has also been investigated for less

complex systems with the aim to design practical protocols and to measure their per-

formance.

Early work from [144] presents an extension of the source model to cooperative pairwise

key agreement and group key generation in a pairwise independent network (i.e., a

network in which the point-to-point channels are independent). Point-to-point keys are

generated from each physical network link and the group keys (or extra secret bits for
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pairwise cooperative keys) are propagated through XOR-ing operations over a graph

representation of the network.

In more recent studies [145] [146], the secret key between two user nodes is generated

with the help of a relay. First, non-cooperative pairwise keys (from the main channel and

the side channels, i.e., the channels between each node and the relay) are generated using

a typical key distillation procedure based on channel gains [145] or phase estimations

[146]. At this point, each user node holds the key from the main channel and a key

from a side channel. After that, the relay, which holds the keys obtained from both side

channels, publicly broadcasts the bitwise combination of those keys. The user nodes

can therefore recover the key that was generated by the other user node and the relay

and append one of these side channel keys to the main channel key. An equivalent

approach based on pairwise keys is described in [147], where the received signal strength

is quantized for non-cooperative pairwise key generation and a group key, generated by

a root node, is securely distributed in the network using the pairwise keys.

If the wireless channels are static in time or too sparse in terms of multipath, there

might not be enough information to harvest in order to generate a robust secret key. In

order to deal with the issue of limited entropy of the source model, a recent study [148]

extends the channel model for key generation to a cooperative scenario with a relay and

an eavesdropper that is collocated with the relay. The authors derive the upper and

lower bound for the secret key rate with a relay and propose a joint optimized design

of the different key generation phases (advantage distillation, information reconciliation

and privacy amplification) while focusing on the trade-off between security and protocol

efficiency. Although it is shown that collocating with the relay is the worst case scenario

for the secret key rate, this assumption also facilitates the advantage distillation phase

because the legitimate users are informed about the quality of the eavesdropper’s signal

by the cooperative relay.

Overall, the previous contributions on the source model with cooperative pairwise keys

or with group keys rely on the initial pairwise single-link key generation and subsequent

key distribution. This involves extra-traffic and latency, while the length of the group key

is limited by the shortest pairwise keys. Herein, we describe a novel method of physical

layer group key generation that avoids the pairwise key generation before group key

generation. An alternative way to deal with the entropy limitation in the case of the

source model would be to use multiple links as input signals for quantization. The

final group key is obtained after quantization and reconciliation of a concatenation of

measurements from several links. The protocol involves several cooperative nodes and

the obtained key is by construction known to all the participants, so it becomes a

group key. This solution avoids extra public communication overhead but comes with
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an expense on the signal processing side where supplementary operations for channel

probing are needed.

The “probing” of a non-adjacent channel is possible because of the cooperation between

nodes, which will send specific signals (called s-signals in the following) in order to “in-

duce” a certain channel state observed at the receiver. This operation depends on the

type of measured signal; in the case of IR-UWB channel responses, which we will use

for illustration purposes, the operation consists in a deconvolution operation, which is

one of the scenarios with the highest complexity. This can be nonetheless acceptable

for current personal devices such as smartphones and possibly even for next generation

wireless sensors. The general concept and the protocol are however applicable to dif-

ferent technologies and channel measurements, which would require less complex signal

processing capabilities.

Similar concepts (e.g., IR-UWB time-reversal [149]) have been put forward for improved

communication robustness and intrinsic signal secrecy by spatial focusing of the signal

energy. These methods rely on pre-filtering on the transmitter side and thus, enable

location-dependent SNR gains on the receiver side. However, they are neither intended

to provide secret material, such as keys, to higher layer cryptographic functions nor used

in cooperative protocols as described in our method.

4.2 System model

We consider the simplest example of full mesh topology, consisting of three nodes (A,

B, and C) with direct IR-UWB links between each pair. The received signal can be

expressed according to Eq. (4.1)-(4.2).

yuv(t) = (p ∗ huv)(t) + wuv(t), wuv(t) ∼ N (0, σ2
w) (4.1)

huv(t) =
K∑
k=1

xkδ(t− τk) (4.2)

where yuv(t) of duration Tw is the convolved noisy channel response between the trans-

mitter u ∈ {A,B,C} and the receiver v 6= u, v ∈ {A,B,C}, p(t) is the transmitted pulse

waveform of duration Tp, huv = hvu is the reciprocal channel impulse response between

u and v, xk and τk are respectively the amplitude and delay associated with the kth

multipath component (k ∈ {1, ..K}), and wuv(t) is the AWGN.
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We arbitrarily define the SNR as the ratio between the power of the transmitted pulse

and the noise power, assuming that all the CIRs are normalized (
∫ Tw

0 h2(t) dt = 1):2

SNR =
Ppulse
Pnoise

=

1
Tp

∫ Tp
0 p2(t) dt

σ2
w

(4.3)

The three channels (hAB, hAC , and hBC) are considered independent two by two at a

given channel probing time. Also, we assume that they vary from one channel probe to

the next one (independently of the past channel realizations).

4.3 Cooperative key distribution

One way of extending the point-to-point source model for key generation to several links

and to a group key is to generate pairwise keys on each link and then distribute a group

key (similarly to [144]). CKD can be achieved in two phases.

• Each node generates a pairwise symmetric key with each of its neighbors based

on the properties of the radio channel. The employed key generation method for

the current evaluations will be described in Section 4.4.1. Contrary to CKG, the

key generation for CKD is performed separately for each pair of nodes using only

their corresponding channels.

• A group key, generated by a lead node using a random number generator, is

propagated in the network by XOR-ing operations using the previous single-link

keys. The security of the scheme relies therefore on the single-link keys.

It is not compulsory to have pairwise keys on all the links but at least on a sufficient

number of links that can form a spanning tree over the given network. The length of

the group key is limited by the length of the pairwise keys in the following manner: if

we consider that there is a pairwise key between the lead node and each other node and

we want to avoid additional traffic, the length of the group key is the minimum of the

lengths of these keys. If not, the group key length is limited by the minimum key length

in the most “advantageous” spanning tree (i.e., the spanning tree containing the links

with the largest key lengths). In this case, additional traffic between nodes is needed in

order for the lead node to be able to determine the group key length before initiating

the distribution procedure.

2We adopt a new SNR definition based on the pulse duration because in this particular study we
deal with various lengths for the observation windows: one for adjacent channel probing and another
for non-adjacent channel acquisition. This aspect is however transparent in the protocol because of a
supplementary windowing process.
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Figure 4.1: Physical layer cooperative key generation

4.4 Cooperative key generation

This section describes the proposed cooperative key generation method for IR-UWB sig-

nals [100] in three steps: description of the protocol sequence including a deconvolution

operation (Section 4.4.1), focus on the deconvolution problem from a statistical esti-

mation perspective and on state of the art approaches for statistical inference (Section

4.4.2), and performance evaluation of the selected methods for deconvolution (Section

4.4.3-4.4.4).

4.4.1 Protocol description

In the following description A, B, and C have different roles and the protocol must be

repeated with interchanged roles in order to obtain a group key. We define A as the

cooperator, B as the initiator and C as the generator. We also refer to an adjacent

channel as the channel that can be directly probed by a node (e.g., channels [B − A]

and [C −A] for node A). The CKG protocol consists of several steps:

• channel sounding using a pulse template signal to obtain adjacent channel re-

sponses (yBA(t) and yCA(t)) for the cooperator A according to Eq. (4.1) (step 1

in Figure 4.1).
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• CIR estimation (i.e., delay and amplitude extraction) at the cooperator A from the

received yCA (step 2 in Figure 4.1). This operation can be achieved by means of

sampling at sampling frequency Fs and correlation with an a priori pulse template

(corresponding to the expected unitary received pulse waveform p(t)). The used

search-subtract-readjust algorithm [110] iteratively detects, estimates and then

subtracts multipath components out of the acquired received signal yCA to obtain

ĥCA.

• computation of the so-called s-signal sAC at the cooperator A (step 2 in Figure

4.1). The previous channel estimate ĥCA is used by the cooperator A to compute

sAC to be sent to the generator C so that the latter deduces the non-adjacent

channel [B −A] represented by yBA. The following problem needs to be solved:3

Find sAC s.t. (sAC ∗ ĥCA)(t) = yBA(t) (4.4)

• transmission of the computed s-signal sAC from A to C (step 3 in Figure 4.1). Ac-

cordingly, the employed transmitter must enable the programming of an arbitrary

IR-UWB waveform, given an a priori occupied bandwidth (e.g., [94]), in order to

generate sAC . The generator C receives:

rBA(t) = (sAC ∗ hAC)(t) + wAC(t) (4.5)

Steps 1-3 can be performed by both A and B because they can both measure C’s

non-adjacent reciprocal channel [B − A] ≈ [A − B]. If both of them send an s-

signal, supplementary processing can be used at C to coherently take advantage of

the two incoming signals rBA and rAB in order to obtain a more reliable version

of the non-adjacent channel.

• processing of all the acquired signals at the generator C. At this point, C detains

signals corresponding to all three channels. These signals are further processed

(e.g., through windowing, signal squaring, low-pass filtering and down-sampling at

frequency Fp, compatible with the multipath resolution capability allowed by the

signal bandwidth). The generator C then concatenates the three signals to obtain

the input quantization signal SCAB. The concatenation is applied according to an

arbitrary order without loss of generality.

• quantization of the input signal SCAB using, e.g., uniform quantization with guard-

bands.

3Although the equations are initially written in the continuous analog domain for more generality,
the channel estimation and the computation of s-signals are solved in the discrete domain (See Section
4.4.2).
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The steps 1-4 are repeated by all the nodes with interchanged roles so that all of

them obtain the three channels.

• public discussion between the three nodes: i) sharing the indexes of the dropped

samples falling into the guard-bands; ii) error correction using Reed-Solomon codes

(a lead node, for example A, generates a syndrome representing its own bit se-

quence and sends it over the public channel to the other nodes, which will try to

decode/correct their bit sequences to align them to A’s sequence).

4.4.2 Parameterized s-signal computation

Searching for a solution to Eq. (4.4) is a non-trivial deconvolution problem. We will

first explore straightforward solutions4 and then, focus on the more general problem of

s-signal estimation implying two levels of statistical inference (model fitting and model

selection) separately or jointly.

Deconvolution solutions

As mentioned before, A needs to solve the following equation :

ĤCAs = yBA (4.6)

where yBA is the N×1 sampled version of yBA, ĤCA is the N×Ns matrix corresponding

to the Nh × 1 convolution kernel ĥCA such that ĤCAs = ĥCA ∗ s.

Considering the classical convolution definition, Ns should be N −Nh+ 1. This leads to

an overdetermined system of equations, which is consistent (i.e., has one or an infinity

of solutions) only if a certain number of equations are linear combinations of the rest of

the equations. As the coefficients from ĤCA are random by construction, the present

system has high chances of being inconsistent. Consequently, we give the s-signal more

degrees of freedom by imposing that only the valid part of the convolution5 approaches

yBA, which implies that Ns = N +Nh−1. Eq. (4.6) becomes then an underdetermined

system, which can have zero or an infinity of solutions.

Therefore, we replace the search for an exact solution to Eq. (4.6) with a least-squares

(LS) minimization problem (Eq. (4.7)), whose solution will be denoted as ML (maximum

4We restrict our analysis to the natural temporal domain of IR-UWB signals in order to avoid
supplementary processing incurred by the Fourier Transform, but also because of the richness of data
processing techniques concerning deconvolution in similar domains (e.g., statistical spatial methods for
image deconvolution).

5The samples of the central part of the convolution, where the two input signals overlap entirely.
These samples are obtained from the summing of min(Ns, Nh) non-zero terms.
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likelihood6). The LS problem is still ill-posed in the sense that it could have multiple

solutions.

sML
AC = argmin

s
||ĤCAs− yBA||2 (4.7)

We quantify the performance of the deconvolution operation with the residual error

(RMSE) between the analog signals (sAC ∗ hAC)(t) and yBA(t). Note that the receiver

should perform additional windowing operations since the sent s-signal is longer than

the needed observation window. This RMSE metric includes the degradation produced

by the imperfect channel estimation ĥCA 6= hCA. Additional artefacts are incurred by

the additive noise from the [A − C] channel. Even though these degradations are not

directly considered for the computation of the s-signal, their effect is taken into account

in the performance evaluation from Section 4.5.

In terms of implementation, Eq. (4.7) can be solved using solutions similar to Mat-

lab R©’s linear least-squares solver mldivide, which employs QR decomposition on matrix

ĤCA and provides a solution s with the fewest possible non-zero components. After com-

puting the s-signal using the aforementioned method on sampled signals at Fs = 10 GHz,

we simulate the pseudo-analog s-waveform sAC(t) by sinc-interpolation.7 The obtained

waveform is next convolved with the true multipath channel hAC(t). In Figure 4.2, we

show the noiseless received signal in C and the target signal to be deduced, yBA(t), for

arbitrary realizations of CM1 channels (according to the IEEE 802.15.4a standard). All

the received and target signals are normalized with respect to their maximum absolute

value. We will refer to these particular channel realizations as “the basic channel con-

figuration” hereafter. A value of SNR = 20 dB is employed for all the evaluations in the

present section.

Therefore, we observe that the ML solution can be unstable with respect to the impre-

cision of channel estimations. This means that the criterion of fewest non-zero elements

is not adapted to our problem and another type of least-square solution should be

preferred. A simple preliminary test using Matlab R©’s Moore-Penrose pseudo-inverse

function pinv, which produces a solution s with minimal l2-norm, shows significant im-

provements at the expense of longer computation times. As it relies on singular value

decomposition, the computation of the pseudo-inverse is deemed to add unnecessary

complexity to the resolution of a linear system.

6LS and ML estimators are equivalent in the case of a noisy data model with Gaussian noise, which
will be the case for our data model described in the subsequent subsections.

7The pseudo-analog waveforms are simulated at a simulation frequency of 100 GHz.
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Figure 4.2: Example of deduced signal with the ML method (RMSE = 29.8%)

The instability issue of the ML solution can be efficiently addressed by adding a penalty

term to Eq. (4.7) and solving it, for example, with mldivide-like methods. Note that

if P = INs , the solution of Eq. (4.8) is equivalent to the aforementioned pinv solution

with minimal l2-norm, where λ is a fixed parameter.

sAC = argmin
s

||ĤCAs− yBA||2 + λ||Ps||2 (4.8)

This operation is known as a Tikhonov regularization, where matrix P is chosen in

order to constrain s and λ is a real scalar trade-off parameter. The penalty term, also

called prior in a Bayesian setting, enforces the desired characteristics of the optimized

s-signal (e.g., minimal l2-norm, smoothness, etc.), while the first term keeps the result

after convolution close to the data. Eq. (4.8) has a closed form solution, which we will

denote as MAP (maximum a priori):

sMAP
AC = (ĤT

CAĤCA + λPTP)−1ĤT
CAyBA (4.9)

Figure 4.3 shows the normalized deduced signal with the MAP solution for the com-

putation of the s-signal (basic channel configuration). For this illustration, a value of

λ = −4 dB is chosen. In the next subsections, we investigate methods for finding an

adapted value for this parameter.

The signal instability observed for the ML solutions can be regarded as an overfitting

issue: the s-signal is computed based on the imperfect channel estimation, ĥ, but the

final performance depends on the unknown real channel, h(t). This means that even

though the ML deconvolution solution is exact for the given data (channel estimates
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Figure 4.3: Example of deduced signal with the MAP method (RMSE = 9.8%)

and target channel), it could behave unpredictably for slightly different real channel

conditions (equivalent to variations in the channel estimates). Adding the penalty term

avoids the overfitting if its weight is properly chosen.

From deconvolution to inference

The deconvolution can be seen as a generalization of an interpolation problem (i.e., in-

terpolation is a deconvolution with a kernel consisting of a Dirac delta function). The

tutorial paper on Bayesian interpolation [150] uses the noisy data interpolation problem

to illustrate the principles of Bayesian model selection, regularization and noise estima-

tion and to compare them to classical (frequentist) misfit or cross-validation techniques.

We first summarize the approach presented in the aforementioned work and then, de-

scribe a more recent alternative for statistical estimation problems with incomplete data,

namely the Expectation Maximization algorithm.

Like other data modeling processes (e.g., pattern classification, clustering, detection,

etc.), data interpolation or signal estimation8 can consist in a statistical inference pro-

cedure with (minimum) two phases [150]:

• signal estimation based on a specified model with known parameters (also called

first level of inference). This phase can be solved by Bayesian (e.g., MAP) or non-

Bayesian (e.g., ML) estimators. In the Bayesian case, the fundamental relation

8Equivalent terminologies for interpolation include regression, curve-fitting, learning.
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between the probability density functions is expressed as:

Posterior =
Likelihood× Prior

Evidence
(4.10)

p(s|D,Θ) =
p(D|s,Θ)× p(s|Θ)

p(D|Θ)
(4.11)

where D is the known data, s is the searched signal and Θ represents the model

parameters.

• model comparison/selection, which reduces to a parameter tuning phase if the aim

is to find an optimal value for the parameters of a given model. Classical techniques

include hypothesis testing, misfit criteria9 or cross-validation (described in Section

4.4.3). The Bayesian “evidence maximization” method treats this step as a second

level of interference, the parameters becoming the new quantity to be estimated

(e.g., by ML or MAP estimators). Maximizing the evidence p(D|Θ) is equivalent

to finding the parameters that can best “explain” the observed data with respect

to the chosen model.

The two levels of inference are performed independently: first, estimation of the pa-

rameters based on evidence maximization and then, signal estimation with the obtained

parameters.

Alternatively, the estimation of a signal using a model with unknown parameters can be

solved by an Expectation Maximization (EM) algorithm. EM has been discovered and

used independently in several domains ranging from genetics, statistics (estimation of

parameters of mixture distributions) to maximum likelihood image reconstruction and

speech recognition (estimation of parameters of Hidden Markov models) [151]. Often

thought as an evolution of the maximum likelihood estimator, EM can be simply il-

lustrated through the example of the maximum likelihood parameter estimation with

incomplete data [152]. For simplicity, we will restrict to this example10 and then, show

how our deconvolution problem can be seen as an incomplete data model.

Given some data D sampled from a model with unknown parameters Θ, the ML es-

timator returns the parameters ΘML that maximize the likelihood function p(D|Θ).11

Most of the time, the model involves hidden variables S (e.g., D = f(S,Θ)), which

cannot be efficiently taken into account by the ML estimator on its own, but which can

be naturally included in the EM framework. This algorithm alternates between solving

9The misfit metric represents the gap between the known data and the statistics of the predicted
data with the unknown model parameters. The model parameters are derived from solving the equation
that sets the misfit metric to a fixed value.

10A more detailed description of EM and its properties can be found in [151], [153], [154].
11This quantity represents the likelihood function with respect to the parameter estimation problem

and also the evidence with respect to the signal estimation problem considered above.
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for the hidden variables, knowing the latest parameter estimates and the observed data,

and finding the optimal parameters, knowing the current hidden variable estimations

and the observed data. Contrary to the level-based statistical inference, EM condenses

the two inference levels in an iterative procedure with two steps for each iteration i:

• the Expectation step (E-step): computation of the conditional probability distri-

bution p(S|D,Θi−1)12 and of the conditional expectation ξi(Θ).

ξi(Θ) = ES|D,Θi−1
[ln p(D, s|Θ)] (4.12)

• the Maximization step (M-step):

Θi = arg max
Θ

ξi(Θ) (4.13)

The convergence can be proved by showing that the algorithm increases the likelihood

at each iteration [152].

The deconvolution problem presented in the previous subsection can be seen as a sig-

nal estimation problem with unknown model parameters or, equivalently, a parameter

estimation problem (i.e., the regularization parameter or the weight of the prior) with

hidden variables (i.e., the searched s-signal). In order to apply Bayesian model selection

techniques, we create a statistical model corresponding to the regularized deconvolution

equation Eq. (4.8).

Statistical deconvolution model

We identify the known data as the target signal (yBA) and the hidden data as the

searched s-signal (sAC). The estimated channel (Ĥ) is a deterministic fixed quantity in

this model. For simplicity and generalization purposes, we will drop the signal indexes

representing the users for the rest of Section 4.4. The model consists of two equations:

one for the data fit, where e represents the fitting error with independent samples of mean

0 and variance ε2, and one for the signal prior, which offers an artificial representation

of the resulting waveform as a noisy zero-mean process of sample variance γ2.

y = Ĥs + e, e ∼ N (0, ε2IN) (4.14)

Ps ∼ N (0, γ2INs) (4.15)

12Note that the E-step provides an estimation of the probability distribution over the hidden variables,
so implicitly the mean and the associated uncertainties.
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Therefore, we can write Bayes’ rule for the given model:

p(s|y, ε, γ) =
p(y|s, ε)× p(s|γ)

p(y|ε, γ)
(4.16)

By identification between Eq. (4.8) and the MAP estimator derived from the current

model,13 we have ε2/γ2 = λ. Although the MAP solution expressed in Eq. (4.9) depends

only on the value of λ, the present model provides a richer description of the underlying

phenomena because the two model parameters (ε and γ) have a concrete meaning (i.e.,

ε represents the capacity of the model to fit the known data and γ can represent, for

example, the energy of the searched signal).

We have therefore several solutions for our deconvolution problem:

• a MAP solution (solved by an LS minimization algorithm) with two choices of

parameterization:

– a weight parameter between the data fit and the prior (λ from Eq. (4.8)),

which can be set using a cross-validation technique (Section 4.4.3).

– Bayesian parameterization based on ε and γ, which can be estimated with

an evidence (p(y, Ĥ|ε, γ)) maximization procedure [150]. We will not evalu-

ate this option in our simulations because of the complexity of the evidence

function in terms of optimization (see Appendix C).

• an EM solution, which provides a joint estimation of the parameters of the Bayesian

model and of the s-signal (Section 4.4.4).

4.4.3 MAP solution with Cross Validation parameterization

The MAP solution depends on the choice of the trade-off parameter λ and of the prior

matrix P. Based on the empirical observations of the signal aspect at Fs = 10 GHz

during the preliminary tests, we choose P = INs ,
14 corresponding to a minimization of

the signal energy for regularization purposes. A parametric study on λ shows how the

performance of the MAP solution depends on the trade-off parameter. In Figure 4.4, we

represent the averaged RMSE (over 100 channel configurations) between the normalized

noiseless received signal at C, (s ∗ h)(t), and the normalized target signal, y(t). We also

plot the standard deviations around the respective RMSE means with dotted curves.

13sMAP = arg max
s

p(y|s, ε, γ)× p(s|ε, γ)

14A prior matrix corresponding to a differential kernel [1,−1]T gives similar results, but it is more
adapted at higher sampling frequencies, where the signal can be considered smooth.
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Figure 4.4: Non-adjacent signal reconstruction performance for 100 channel configu-
rations (ML, MAP)

We conclude that at small λ values, the regularization works as intended, reaches an

optimal value for λ values around 0 dB, but degrades after a certain upper threshold,

when the prior obtains too much weight and “flattens” the signal in its initial form

(s → 0). Although the estimated s-signal can be amplified or the received signal can

be normalized, as it is the case, the received signal with unadapted λ contains more

artefacts, as it can be observed for λ = 2 dB in Figure 4.5 (basic channel configuration).

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Excess delay (ns)

N
o
rm

a
li
z
e
d
si
g
n
a
ls

 

 

yBA(t)

(sMAP

AC
∗ hAC)(t)

Figure 4.5: Example of deduced signal with the unadapted MAP method (RMSE =
11.6%)

Cross-validation (CV) methods are statistical tools for model validation, i.e., they are

employed to evaluate how well a given model will generalize to unknown variations in

the data set. Given a known data set (in our case, the channel estimates and the target

channel), a basic cross-validation procedure splits it randomly into a training set and a
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validation set. The problem (in our case, Eq. (4.8)) is solved using only the training

data set. Then, the found solution s(λ), which, herein, depends on the chosen λ value,

is plugged into the given model for the validation set (Eq. (4.6)) and the performance is

evaluated via the generalization error from Eq. (4.17). The optimal CV λ value is the

one that minimizes the generalization error ∆g(λ).

∆g(λ) = ||Ĥts(λ)− yt|| (4.17)

where the t-index represents the training data set.

For our tests, for each channel configuration, we employed 20 random partitions with

70% training data and 30% validation data. The RMSE for the same 100 channel

configurations tested in Section 4.4.2 are also shown in Figure 4.4 together with the

corresponding chosen λ values. It is observed that the performance of the CV tech-

nique depends strongly on the channel configuration. This can be visualized in Figure

4.6, where we show the shape of the generalization error (computed on the sampled

un-normalized signals) for two different channel configurations. An RMSE of 9.5% cor-

responds to Figure 4.6(a) (the case of the basic channel configuration), whereas an RMSE

of 18% corresponds to Figure 4.6(b).
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Figure 4.6: Generalization error curves for two channel configurations

The generalization error does not always have a minimum and, therefore, model selection

using CV does not have optimal performance for all channel configurations. This could

be explained by the small cardinality of the data set on which cross-validation is applied

(500 samples). In certain cases, the validation samples can be insufficient or unadapted

to “generalize” the estimation of the s-signal to the unknown real channel conditions.
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4.4.4 Expectation Maximization solution

The EM algorithm applied to our Bayesian data model consists in solving the following

steps:15

E-step: ξi(ε, γ) = Es|y,εi−1,γi−1
[ln p(y, s|ε, γ)] (4.18)

M-step: (εi, γi) = arg max
(ε,γ)

ξi(ε, γ) (4.19)

After the developments detailed in Appendix D, we obtain a mean signal s, its associated

covariance Σs, and the model parameters ε and γ:

Σs = (ε−2ĤT Ĥ + γ−2PTP)−1 (4.20)

s = ε−2ΣsĤ
Ty (4.21)

ε =

√
yTy − 2yT Ĥs + Tr(ĤT ĤΣs) + sT ĤT Ĥs

N
(4.22)

γ =

√
Tr(PTPΣs) + sTPTPs

Ns
(4.23)

In order to evaluate the performance achieved by the EM signal estimation method, we

measure the RMSE for the same previous 100 channel configurations and the s-signals

obtained after 200 EM iterations starting from the same initial point λ as the MAP

solution.16 Representative parameter convergence curves are reported in Appendix D.

From Figure 4.7, it can be inferred that, at low λ values, the EM solution has lower

performance compared to the MAP estimator with manually tuned parameter. However,

it is a relatively “unfair” to compare a solution that gives an estimation of the signal and

the parameters (EM) with one that takes as an input a suitable value of the parameter

and provides only an estimation of the s-signal. Moreover, EM presents an RMSE

advantage for relatively large values of λ, for which it manages to find optimal parameter

values that, on average, incur less artefacts on the final deducted signal (e.g., Figure 4.8

for the basic channel configuration).

To sum up, the performance achieved by the EM solutions with the considered model

are comparable or inferior to a manual tuning of the trade-off parameter (i.e., choosing a

constant very small prior weight irrespective of the channel configuration). This suggests

that the incurred complexity of the EM solution is unnecessary. However, the EM

15For reasons of consistency in the vector and matrix notations, we ignore the convention regarding
the capitalization of the names of the random variables

16We actually set γ0 = 1 and ε0 = γ0
√
λ.
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Figure 4.7: Non-adjacent signal reconstruction performance for 100 channel configu-
rations (EM, MAP)

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Excess delay (ns)

N
o
rm

a
li
z
e
d
si
g
n
a
ls

 

 

yBA(t)

(sEM

AC
∗ hAC)(t)

Figure 4.8: Example of deduced signal with EM (RMSE = 9.8%)

framework presents several advantages that cannot be achieved by any of the alternative

solutions:

• computation of the uncertainty related to the s-signal estimation, potentially ex-

ploitable by the subsequent quantization layer.

• comparison between different priors (e.g., another example of prior could be the

information about arbitrary regulatory emission masks compulsory for over-the-air

transmissions).
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• joint s-signal estimation and channel estimation adaptation if supplementary in-

formation about the channel estimation uncertainty is available. In this case, the

hidden variable would be the couple (s,h).

4.5 Performance evaluation

Simulation framework

We now evaluate the two key generation protocols, namely CKD and CKG, in a full

mesh network of three nodes considering only the MAP solution for CKG. We deem

that the EM solution presents system-level advantages but its impact is less obvious in

terms of final key performance. Our aim is to compare the two protocols in terms of

number of generated bits after several rounds of channel probing for the same number

of over-the-air packets. The quantization and reconciliation schemes are not analyzed

in this section because they are not discriminant elements for the two protocols, which

employ the same type of input signal for quantization. However, it should be noted that

in a more exhaustive performance assessment, the random properties of generated keys,

which depend on the input signal and the quantization algorithm, should be studied as

well.

The reciprocal CIRs corresponding to the three links are generated independently using

the IEEE 802.15.4a statistical model for LOS indoor environments (CM1). The trans-

mitted pulse for initial channel probing p(t) has a bandwidth of 1 GHz (defined at -10

dB of the Power Spectral Density) and a center frequency at 4.5 GHz. The duration of

the observation window is set at Tw = 50 ns.

For CKG, the sampling frequency for channel impulse response estimation and for the

computation of s-signals is set at Fs = 10 GHz. The s-signal is computed using the MAP

solution in Eq. (4.9) with the regularization parameter set manually to λ = −4 dB and

the obtained s-signal is then filtered to conform with the required signal bandwidth and

central frequency.

The input signal for quantization has a sampling frequency of Fp = 1/Tp and it is

normalized with respect to the minimum and the maximum values in order to obtain

signal samples between 0 and 1 for all nodes. An example of such a signal issued from

link [A-C] and seen in A, B (based on the reception of an s-signal), and C is provided

in Figure 4.9. For simplicity reasons, we choose a two-bit uniform quantization with

corresponding cells {(0-0.25), (0.25-0.5), (0.5-0.75), (0.75-1)} and a Grey dictionary

({“00”, “01”, “11”, “10”}). The employed guard-bands (GB) vary between 0 and 0.1



Chapter 4. Cooperative physical layer key generation 112

around the borders of the quantization cells. As previously, reconciliation is implemented

with a Reed Solomon code (i.e., 127 message codewords of 7 bits and 123 data codewords

after padding the quantized binary sequence with dummy bits in order to obtain the

needed block length for encoding).
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Figure 4.9: Typical input quantization signal seen by the three nodes (SNR= 20 dB)

Results

As a preliminary study, we compare the number of communication packets (including

broadcasts when possible) needed for one round of key generation for the two methods

(Table 4.1). We do not consider the packets exchanged in order to establish a lead

node (for reconciliation in CKG and for distribution in CKD) because they are not

discriminating. The cooperative channel probing for CKG can be achieved with 3 or

6 exchanges depending on the number of cooperators. The key distribution for CKD

consists of one packet sent to the lead node to inform it of the length of the key on its

non-adjacent channel and 2 packets for group key propagation. We conclude that, in

any case, CKG requires less traffic than CKD to issue a group key.

Table 4.1: Exchanged packets for one group key generation/distribution

Phase/Method CKD CKG

Pairwise channel probing 3 3

Cooperative channel probing 0 3 or 6

Reconciliation (dropping) 6 3

Reconciliation (error-correction) 3 1

Key distribution 1 + 2 0

Total 15 10 or 13
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Table 4.2 compares the number of packets needed for CKD and CKG in a full mesh

network of N nodes when CKG inference is achieved with only one cooperator. Because

of the cooperative channel probing, CKG is less scalable than CKD for N > 6. However,

larger values of the number of nodes makes it difficult to obtain a full mesh scenario and

to establish a key during the channel coherence time for both methods and they are,

therefore, not practical.

Table 4.2: Exchanged packets for one group key generation/distribution in a full mesh
of N nodes

Phase/Method CKD CKG

Pairwise channel probing N N

Cooperative channel probing 0 [N(N − 1)/2− (N − 1)]×N
Reconciliation (dropping) N(N − 1) N

Reconciliation (error-correction) N(N − 1)/2 1

Key distribution N(N − 1)/2 0

Total O(N2) O(N3)

The presented simulation results are obtained for a fixed-traffic scenario (30 packets

corresponding to 2 rounds for CKD and 3 rounds for CKG). Keys that are not equal

after reconciliation are considered to have length of 0. Averaging is performed over

500 channel configurations (each configuration comprising three channel realizations

corresponding to the three pairwise links). The channels are independent over the three

links and also from one round to another, meaning that bits can be concatenated for

the final key.

From Figure 4.10, we conclude that CKG is more advantageous in terms of key length

for higher SNR and larger guard-bands. This is due to the fact that before quantization,

the CKG method does not have direct access to the non-adjacent channel measurements

that are obtained after a deconvolution operation and another noisy transmission. This

degrades the reciprocity of the final samples and leads to more keys that are not agreed

upon for CKG at lower SNR or smaller guard-bands. However, it can be verified that

CKG achieves a relatively high bit matching ratio between the three keys generated at

the participating nodes (Figure 4.11). The bit matching ratios for the CKD method,

although higher than those for CKG, do not present an interest in this study because they

can only be computed for pairwise keys and represent solely the single-link reciprocity

performance of the system.

4.6 Summary

In this chapter we have investigated an alternative method for generating secret group

keys using the physical layer in IR-UWB systems without relying on classical pairwise
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Figure 4.10: Average key length gain of CKG w.r.t. CKD
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Figure 4.11: Average bit matching for CKG

key agreement. For each node, we exploit the concatenation of adjacent and non-adjacent

links in a mesh network in order to gather more entropy before the quantization process.

We show the advantages of our method in terms of traffic overhead as well as in terms

of key length for certain parameter configurations.

Our proposal focuses on the parameterized estimation of specific s-signals obtained after

a deconvolution process and emitted by cooperative nodes in order to “induce” non-

adjacent channel information for their neighbors. We investigate the accuracy of the

non-adjacent signal reconstruction phase at the reception side, which is an important

factor for subsequent key generation. Consequently, we describe and test two methods for

signal estimation and parameter specification. The first one is based on a cross-validation

technique with the aim of choosing an optimal value for the maximum a posteriori
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deconvolution solution, whereas the second one applies the Expectation Maximization

algorithm to obtain a joint estimation of the required signal and of the parameters of

the employed statistical model. The two methods are iterative with different levels of

complexity (i.e., iterative cost computations for CV and iterative matrix inversions for

EM) but also different evolution opportunities (e.g., the EM model is more adapted for

incorporating the errors on channel estimation).

Further studies should look into the complexity issues of the s-signal generation, poten-

tially by considering a joint design between the s-signal generation and the rest of the

key generation protocol (e.g., signal acquisition, estimation, quantization).

The proposed scheme can be adapted to other technologies (narrow-band, OFDM) by

changing the cooperative signal generation method according to the most relevant chan-

nel features. Moreover, the concept of s-signal could be extended to cases where the

target signals are not channel estimates but randomly generated information, which

leads to a mixed key generation model (see Section 1.2.1). However, this complicates

the overall key generation procedure because there would be no more direct acquisitions

of channel information.





Chapter 5

Conclusion and perspectives

In this thesis we were interested in symmetric secret key generation methods using

the physical layer. This approach to symmetric key distribution is part of the larger

framework of physical layer security, which takes advantage of wireless propagation phe-

nomena, such as fading and noise, in order to complement traditional confidentiality

and authentication cryptographic solutions. Physical layer security solutions are situ-

ated at the crossroads of information theory and signal processing and are particularly

appealing in decentralized wireless networks, where security becomes more challenging

because of the lack of infrastructure. In this context, key agreement strategies based on

public discussions have been proved simpler to implement than keyless secrecy achiev-

ing solutions, which require wiretap code design and/or physical advantage engineering

(e.g., by jamming or beamforming). Similarly to the majority of secure communication

solutions, physical layer key generation does not address initial authentication of the

legitimate users.

The IR-UWB CIR is an interesting option for secret key generation according to the

source model, first of all, because of the fact that one CIR measurement provides several

values for quantization (i.e., several significant channel taps), but also because of the

delay information contained in such signals (e.g., the excess delays of the significant

channel taps). This is not the case for RSS measurements, for example, which are

acquired at a uniform probing rate or over several parallel channels. As a general

drawback of the source model, the wireless channel must provide temporal variability in

order to generate sufficiently long keys or renew them. Since this issue is not directly

linked to the signal structure and rather depends on the environment or on the network

configuration (i.e., mobile or static), we did not address it in the main part of the present

work (only partially in Appendix F).
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We do not claim that IR-UWB CIRs are always more advantageous than other wireless

technologies and channel characteristics because the design of key generation protocols,

as any other security solution, depends on the context (i.e., application, deployment

environment, type of network, hardware or software limitations, etc.). We believe that

in order to achieve optimal integration of physical layer solutions, it is necessary to take

advantage of all the opportunities provided by a certain radio technology. Therefore we

provide guidelines for key generation using various types of IR-UWB temporal signals.

By allowing further processing, IR-UWB signals could be exploited in the frequency

domain as well with the advantage of achieving synchronization at the expense of less

entropy (i.e., quantizing only the absolute value of the complex gain).

The work accomplished in this thesis is divided along three main research axis, cor-

responding to the three main chapters (Chapters 2-4): IR-UWB channel quantization

issues, public discussion strategies for information reconciliation, and cooperative phys-

ical layer key generation. Although the first chapter is concerned with specific IR-UWB

issues, the rest of the our findings can be adapted to other types of channel measure-

ments. Two of our main proposals, namely HIST (Section 2.2) and POSToF (Chapter

3), are extensions of an existing key generation protocol employing IR-UWB directly

sampled signals [95] [79], whereas the rest of the work is built on new signal models

(e.g., channel estimates) and has new aims (e.g., optimized quantization or cooperative

techniques).

Quantization issues for IR-UWB signals

In this work, we considered the optimization of the quantization phase based on supple-

mentary criteria related to reconciliation and privacy amplification. This resulted in a

practical approach for key generation and for the study of the trade-offs between length,

reciprocity and randomness. The studies of quantization algorithms applied to IR-UWB

signals (Chapter 2) highlighted the potential of the delay information for achieving keys

with better randomness properties (i.e., HIST scheme for directly sampled CIRs and DIV

scheme for simulated noisy CIR estimates) or for improving reciprocity in the case of re-

alistic channel estimates. We have also shown how to adapt the quantization thresholds

in order to obtain a desired reciprocity-randomness trade-off for an “average” generated

codeword given the expected average energy of the underlying multipath components.

In this case, the randomness has been measured by the proposed inter-key diversity

metric.

Once realistic CIR estimates are available for quantization, the delay information be-

comes useless for quantization if it is exchanged on the public channel for reciprocity
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purposes. Although the DIV scheme cannot be applied, the optimization of quantiza-

tion thresholds or the search for equivalent uniform quantization thresholds at a fixed

excess delay is still feasible. Nonetheless, since the optimized threshold computation

is based on the statistics of the simplified signal model (i.e., with a Gaussian mixture

model), the performance for individual channel realizations might be different. This can

be caused by the fact that the considered statistics for the true channel might not be

representative for the estimated channel tap, as it has been suggested by the structure

of CIR estimates studied in Section 2.4. Therefore, a new model for realistic channel

estimates should be investigated in order to be able to apply the proposed threshold

optimization techniques. As already mentioned, the difficulty of such approaches resides

in the dependence of the CIR structure on the employed estimator and, to the best of

our knowledge, in the lack of theoretical models for pulse interference scenarios.

Nevertheless, the proposed methods and ideas remain valid for any type of signal that

contains characteristic delay information. For example, we can imagine ED-based chan-

nel probing, similarly to the one used for quantization tests in Chapter 4. Although

these signals have uniform measurement steps, the significant delay information can be

extracted by a threshold operation on the amplitudes (e.g., all the samples lower than a

given value are set to 0). In this way, in dense multipath environments, pairs of delays

and amplitudes could be obtained and quantized according to the described proposals.

Discrete public discussion strategies

In Chapter 3, we presented two extensions (BIN and POSToF ) of an existing public

discussion method [95], which aim at achieving better immunity against eavesdropping

attacks. BIN is an adaptable solution that limits the publicly disclosed information but

is more sensitive to noise than POSToF , which only masks the public information.

We deliberately used ray-tracing data for our simulations because it gives direct insight

into the advantage that an attacker could have by combining the location-dependent

signal with the eavesdropped public information. The study is restricted because the

available data did not allow to consider attackers that are closer than 1 m from one of the

legitimate users. However, the obtained results suggest that the eavesdropping could

become even more problematic at shorter distances for the considered type of signal.

Further investigations should also analyze the case of realistic IR-UWB signals with

denser and more diffuse multipath components, which are likely to favor the legitimate

users.

We acknowledge the fact that although POSToF achieves good results in terms of bit

agreement between the legitimate keys and the key generated by an eavesdropper, the
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performance is highly dependent on the attacker model. We considered a “naive” phys-

ical layer attacker that does not know the relative positions of the nodes and does not

apply any data mining techniques, which would be a subject of research by itself. How-

ever, this is also a more “probable” attacker model.

Lastly, the masking procedure proposed by POSToF is not at all equivalent to an encryp-

tion operation and a simple ToF measurement is by far less powerful than a symmetric

key. In order to achieve better secrecy performance, mobile nodes could use several

consecutive high-precision ToF measurements (e.g., stored in memory) for masking one

public exchange. Moreover, if enough ToF measurements are available, they could be

employed similarly to one-time pads to exchange the excess delays of realistic channel es-

timates. This would therefore allow joint delay-based reconciliation and delay-dependent

quantization for IR-UWB CIR estimates, which have been discussed in Chapter 2.

Cooperative physical layer key generation

Chapter 4 introduced a new idea for extending the key generation source model to several

cooperative nodes in order to directly extract a group key. The proposed solution, a mix

between a source model and a reciprocity-based channel model, relies on equalization-

like operations and avoids over-the-air traffic needed for multiple pairwise key genera-

tion procedures and their associated reconciliation messages. Prior to quantization and

reconciliation, nodes concatenate direct channel measurements from the adjacent links

with measurements from cooperative transmissions of their neighbors. The cooperative

transmissions are meant to assist distant nodes to “infer” their non-adjacent channels.

We illustrate the proposed idea in a scenario where devices can afford expensive com-

putations such as deconvolution operations involving IR-UWB channels. We adopt a

temporal Bayesian approach (i.e., MAP or EM solutions) for the estimation of the opti-

mized signals that need to be transmitted in order to induce a certain desired signal at

the receiver. The most important limitation of these methods, especially the iterative

ones, is the advanced computational capabilities required for implementation and the

computation time. This makes them more adapted to relatively static environments,

which have been one of the motivations for this proposal, and to powerful devices, in

the particular case of IR-UWB. However, the developed CKG protocol could be more

easily implemented in narrow-band systems involving phase or channel gain information

because of the simplification of channel equalization operations.



Chapter 6

Reflections

“We cannot solve our problems with the same thinking we used when we created them.”

Albert Einstein

Progress has always been a part of human nature. The search for more, better and

faster is something almost innate to people as a species and probably the engine that

embarked us on an accelerated journey through technology.

From fire, agriculture and cities to medicine, Internet and autonomous cars . . .

From survival and safety to comfort and pleasure . . .

From local to global.

Technological progress is our response to the limitations we encounter and so, telecom-

munications1 technology becomes the expression of our desire to share information de-

spite the physical limitations of space. As any other invention, it carries within it the

potential for good and bad, in the sense that it can be beneficial from a social or eco-

nomic perspective, a drive for humanitarian actions, a tool of knowledge, a means of

connection, but in the same time, it can be disruptive, misused, overused, detrimental.

Although the binary “good vs. bad” model can be vastly debated, I believe that, at

some point and for each specific context, lines have to be drawn and choices have to be

made. As a technological researcher, it is part of my work to understand the impact

that technology has on the people using it. Whenever possible, this understanding needs

to be incorporated in the technological choices that are made regarding aspects such as

centralization or security. As a daily technology user, I would like to be conscious about

the way I employ it. The present discussion is a short overview of my current perception

of sensitive telecommunications-related issues and the questions they rise.

1from the Greek “tele-”, meaning “distant”, and the Latin “communicare”, meaning “to share”
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You are now online. We own landline phones, computers, tablets, and smartphones

that we can use for phone calls, SMS, MMS, online chat, online calls, video calls, personal

and professional emails, social media, instant private or group messaging, conference

calling. This makes a lot of options for contacting someone and for being contacted. If

the advantages of this proliferation of communication means is obvious on a short-term

basis (e.g., business models, personal life, etc.), the possible negative effects are usually

long-term, more subtle, and dependent on the particular usage.

Some people can show signs of fatigue and decreased productivity when handling multi-

tasking between offline work and abundant emails or phone calls. Others find it difficult

to manage their personal life with constant access to professional emails or when owning

a professional mobile phone. Teenagers or even adults can become so attached to their

online identities and friends that they neglect or fear real social contact. Furthermore,

this can lead to feelings of dissatisfaction and inferiority caused by the permanent com-

parison to the images that “others” project about them and ironically, to feelings of

loneliness. As users, we should understand that being “always on” is both an opportu-

nity and a trap, and that our physical rhythm or reality could sometimes have difficulties

in coping with our instant accelerated online lives.

Based on the philosophical idea that organized refined writing, rather than oral com-

munication, contributed to the development of modern society, it is argued that instant

messaging and social media can potentially produce a regression in our language skills

[155]. This could be caused by the widespread adoption of instant communication tools

that replace the “thought-enhancing” written form of communication with a pseudo-oral

written language. In my opinion, although scientific evidence for proving such claims can

be difficult to obtain, the described scenario is nonetheless plausible given common-sense

trade-off mechanisms between efficiency and creativity, for example.

The Internet of ... Everything! The Internet of Things is about connecting com-

mon objects to the Internet in order to optimize environmental monitoring, infrastruc-

ture management, energy consumption, medical services, transports, etc. or just make

things easier and less time-consuming in our daily life. First of all, the aim of con-

necting billions of objects brings new tremendous challenges regarding the management,

security, privacy or fail-safe requirements of such systems. Secondly, the promised pos-

itive impact should be carefully weighted against the input costs. For example, energy

consumption monitoring systems could help reduce our domestic CO2 footprint, but

the overall environmental impact of the manufacturing, usage and disposal of electronic

devices that are still difficult to recycle has yet to be completely understood.
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Furthermore, at a psychological and social level, would an “easier” daily life or time gains

necessarily make us happier or just more technology-dependent? Of course, the same

could be argued about the washing machine that we now accept as an essential tool in

our lives. However, all technology requires a learning process so in the beginning it can

be perceived as rather disruptive than facilitative. Things become even more complex

when considering the “quantified self” concept [156], which, on the one side, seems

like a valuable tool of self-development, and on the other side, raises ethical concerns

about dehumanization by promoting numerical, objective measurements of complex or

subjective human states.

Regarding technological dependency, an interesting point is made by studies on slave-

making ants (i.e., ants that “enslave” a part of their population), which present dimin-

ished survival capacities if the slave-ants are taken away from the colony [157].2 In my

opinion, this does not necessarily mean that we are becoming “enslaved” by our tech-

nology, but it is obvious that the way we use it shapes our skills and our expectations

in terms of happiness, efficiency, and sometimes self-esteem.

Privacy or the right to accept the terms and conditions you do not under-

stand. The accumulation of sensing data from various sources, especially personal-

related ones ranging from localization and commercial preferences to household indi-

cators, has become the “Graal” for a lot of ICT3 companies. In a consumer-oriented

society, big data brings companies big money through mechanisms such as targeted ad-

vertising or more generally, consumer profiling based on personal information that is

initially not provided for these purposes. This is what allows companies to offer free

online services while remaining highly profitable in some cases (e.g., Google, Facebook,

etc.). Adverse reactions to this business model include views based on the slogan “If

you’re not paying for it, you are not the customer; you are the product being sold.”. Ob-

jectively, postal mail, cellular services, and even libraries are not free, why would email

be? However, the Internet situation is slightly different: the user already pays a fee to

his Internet connection provider and historically speaking, we have been “educated” to

expect free online services. In this context, any online service provider demanding even

a small fee would be perceived as a bad deal.

It is probably that even with a full understanding of the underlying data processing

mechanisms, some users would still accept the data disclosure in return for free Internet

services. However, the advent of the Internet of Things and the fact that we will no

2The cited article references the mentioned ant study in the context of discussions about the
2014 IQ2 debate “We are becoming enslaved by our technology” (http://www.iq2oz.com/debates/
we-are-becoming-enslaved-by-our-technology-/).

3Information and Communications Technology

http://www.iq2oz.com/debates/we-are-becoming-enslaved-by-our-technology-/
http://www.iq2oz.com/debates/we-are-becoming-enslaved-by-our-technology-/
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longer entirely or easily control the information disclosed by our devices will possibly

raise more interest in privacy-friendly solutions already available but less popular today.

Users of a particular data gathering application should be able to transparently choose

what happens to their data, with whom it is shared, and for what purposes. In this

sense, applications should be provided with comprehensive privacy interfaces or even

more, engineered according to social rather than purely commercial principles [158].

The main argument for dismissing privacy-related burdens can be resumed in a simple

rhetorical question: “Why bother if I don’t have anything to hide anyway?”. Although

it might seem legitimate at first, we should consider that privacy is not lost or gained in

one shot, but rather incrementally [159]. If today we do not feel concerned about who

can track our shopping preferences, tomorrow, our online profile might contain sensitive

information (e.g., health-related) that allows discriminative profit-oriented polices to

be implemented (e.g., health insurance fees). We should probably think harder before

contributing to the fading of a right that we do not know when we might need. Fast-

forwarding on the same slope, the paradigm could shift in the sense that disclosing

information could become a requirement in order to have certain basic benefits (i.e., the

unraveling effect [160]). From this hypothetical point and taking into account present

surveillance capabilities and legislation of certain states (e.g., both in terms of data and

meta-data), we could even imagine moving towards the dreaded orwellian4 society.

This inevitably leads us to a more complex issue: government surveillance and the

debated privacy-safety trade-off. Despite the fact that at the present moment we seem

to be far from such orwellian scenarios, precautionary principles encourage us to raise

awareness on privacy issues. On the contrary, a survey on the public perception of

information gathering practices of the US government [161] shows an increase (1985-

1996) followed by a decrease (1996-2006) of concerns regarding privacy threats. The

decrease could be potentially explained by a “cultural lag”: once people get accustomed

to ICTs as part of their daily lives, the related fears diminish despite the fact that

surveillance capabilities might increase. This might also be the case for biometrics in

the following years. However, in this case, privacy issues regarding biometrics seem to be

on the legislation table from the early beginning at least in the EU [162]. Although, the

case of biometrics for border control or national identification is too complex and out of

the scope of this discussion, the idea of using such intrusive identification for customer

profiling is, to my mind, unnecessary for the simple reasons that we are not the things

we buy and that our preferences and habits should evolve as freely as possible in order

to conserve diversity.

4https://en.wikipedia.org/wiki/Orwellian

https://en.wikipedia.org/wiki/Orwellian
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Despite its socio-economic and political connotations, privacy can mean two things:

“the right to be left alone” and “the right to misrepresent oneself” [159]. Personally,

I associate the former with a passive attitude and a personal legitimate choice of not

disclosing ourselves. The latter is probably more complex since it can include active

participation while escaping the responsibility of our sayings and doings. This type

of duality characterizes implementations such as the “darknet”.5 Accessible to drug

dealers and activists in the same time, the darknet is gaining increasing popularity even

for mainstream activities because of its privacy features.6

*

Telecommunications tools bring solutions to the issues they were designed for. The way

we use them can nonetheless cause new problems that could have hardly been antici-

pated at their creation. Similarly to the example of the rapid industrial development

followed by the recent acknowledgment of the need for sustainability measures, ICTs

have witnessed widespread adoption and it is now becoming necessary to think about

sustainable communication technologies. This cannot be achieved by applying the same

concepts that launched or promoted the improvement of ICTs, but rather by delving

into the social, economic, and political contexts and defining the core principles that we

want ICTs to follow. Since they are already so deeply rooted in our lives to the point

that our online identities are becoming persistent, we should expect ICTs to follow the

same principles that we use to define our ideal society: choice, awareness, security, non-

discrimination, freedom of expression, solidarity, etc. As challenging as it may seem, we

should try to translate aspects like these into technological solutions and integrate them

in today’s and tomorrow’s systems.

5Wikipedia: “An overlay network that can only be accessed with specific software, configurations,
or authorization, often using non-standard communications protocols and ports. Two typical darknet
types are friend-to-friend networks (usually used for file sharing with a peer-to-peer connection) and
anonymity networks such as Tor via an anonymized series of connections.”

6http://www.ted.com/talks/jamie_bartlett_how_the_mysterious_dark_net_is_going_

mainstream

http://www.ted.com/talks/jamie_bartlett_how_the_mysterious_dark_net_is_going_mainstream
http://www.ted.com/talks/jamie_bartlett_how_the_mysterious_dark_net_is_going_mainstream
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Appendix A

Bit pattern period

The upper bound on the bit pattern period (uBPP ) is the number of samples of a

sinusoidal function that cross the given thresholds L0
+/δ and L0

−/δ. Figure A.1 shows

that the uBPP presents a symmetry with respect to 0. We remind that Fs is the

sampling frequency and fc is the central frequency of the signal.

From Figure A.1, we have:

L0
+ sin(2πfcα) = L0

+/δ (A.1)

α =
arcsin(1/δ)

2πfc
(A.2)

Figure A.1: Illustration of the computation of the uBPP
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We define Thalf = 1/(2fc) as the demi-period of a sine wave of frequency fc and ∆t =

1/Fs as the sampling resolution.

uBPP = 2(
Thalf
∆t

− 2
α

∆t
) (A.3)

= 2(
1/(2fc)

1/Fs
− 2Fs

arcsin(1/δ)

2πfc
) (A.4)

= 2Fs(
1

2fc
− 2

arcsin(1/δ)

2πfc
) (A.5)



Appendix B

Reciprocity and diversity cost

functions

According to the model in Section 2.3.1, the codewords CAn and CBn are independent

given the noiseless value xn. We define Q(.) as the Q-function representing the Gaussian

survival function for the estimation noise σ0. Although the following expressions contain

discrete variables CAn or CBn , we actually work with continuous probabilities because

P(Cun = cj) = P(Y u
n ∈ [θinfj , θsupj )). Let u ∈ {A,B}.

The diversity cost CS(n, θ) (i.e., the spread of the probabilities of occurrence of the

expected codewords) is detailed in the following equations:

CS(n, θ) = std({P u,1n , P u,2n , ..., P u,2
b

n }) (B.1)

P u,jn = P(Cun = cj |Cun 6= c0) (B.2)

=

∫ ∞
−∞

P(Cun = cj |Cun 6= c0, xn) · fXn(xn) dxn (B.3)

The term P uj,xn = P(Cun = cj |Cun 6= c0, xn) is given in Eq. (B.8).

The reciprocity cost HD(n, θ) (i.e., mean Hamming distance between two valid code-

words) is computed through numerical integration according to the following equation:

HD(n, θ) = EXn [EWn [hd(CAn , C
B
n )|CAn , CBn 6= c0]] (B.4)

=

∫ ∞
−∞

EWn [hd(CAn , C
B
n )|CAn , CBn 6= c0, xn] · fXn|Cn(xn|CAn , CBn 6= c0) dxn
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The two terms of the integrand are detailed as follows. The conditional mean Hamming

distance between two valid codewords:

EWn [hd(CAn , C
B
n )|CAn , CBn 6= c0, xn] =

4∑
i,j=−4
i,j 6=0

PAi,xn × P
B
j,xn × hd(ci, cj) (B.5)

For cj 6= c0:

P uj,xn =
P(Cun = cj ∩ Cun 6= c0|xn)

P(Cun 6= c0|xn)
(B.6)

=
P(Cun = cj |xn)

P(Cun 6= c0|xn)
(B.7)

=
Q(

θinfj −xn
σ0

)−Q(
θsupj −xn

σ0
)

1− (Q(
θinf0 −xn

σ0
)−Q(

θsup0 −xn
σ0

))
(B.8)

The probability distribution function of xn conditioned on the validity of the codewords

is expressed using Bayes’ rule:

fXn|Cn(xn|CAn , CBn 6= c0) =
P(CAn , C

B
n 6= c0|xn) · fXn(xn)

P(CAn , C
B
n 6= c0)

(B.9)

=
P(CAn 6= c0|xn) · P(CBn 6= c0|xn) · fXn(xn)

P(CAn , C
B
n 6= c0)

(B.10)

where

P(Cun 6= c0|xn) = 1− (Q(
θinf0 − xn

σ0
)−Q(

θsup0 − xn
σ0

)) (B.11)

P(CAn , C
B
n 6= c0) =

∫ ∞
−∞

P(CAn 6= c0|xn) · P(CBn 6= c0|xn) · fXn(xn) dxn (B.12)
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Parameterization with evidence

maximization

The optimal parameters can be deducted by maximizing the evidence function:

(ε, γ) = arg max
ε,γ

ln p(y|ε, γ) (C.1)

p(y|ε, γ) =

∫
s
p(y|s, ε) · p(s|γ) ds (C.2)

In order to compute the integral analytically, we will transform it into a generalized

Gauss integral. The integrand becomes:

(2πε2)N/2e−
1

2ε2
(y−Ĥs)T (y−Ĥs) · (2πγ2)Ns/2e

− 1
2γ2

(Ps)T (Ps)
(C.3)

= (2πε2)N/2 · (2πγ2)Ns/2 · e−
1

2ε2
yTy− 1

2ε2
(−2yT Ĥ)s+sT (− 1

2ε2
ĤT Ĥ− 1

2γ2
PTP)s

(C.4)

= (2πε2)N/2 · (2πγ2)Ns/2 · e−
1

2ε2
yTy+ 1

2
ms

Tms · e−
1
2

(s−ms)TCs
−1(s−ms) (C.5)

with

Cs = (ε−2ĤT Ĥ + γ−2PTP)−1 (C.6)

ms = ε−2CsĤ
Ty (C.7)

This leads to:

ln p(y|ε, γ) = −N
2

ln(2πε2)− Ns

2
ln(2πγ2)− 1

2ε2
yTy +

1

2
ms

Tms +
Ns

2
ln 2π +

1

2
ln |Cs|

(C.8)
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The maximization of ln p(y|ε, γ) is usually time-consuming, because of the term 1
2 ln |Cs|,

which involves computing the determinant of an Ns ×Ns matrix.



Appendix D

S-signal estimation with

Expectation Maximization

E-step and M-step

At iteration i:1

• identification of the parameters (mean µs, and covariance Σs) of the searched

signal s from the expression of the conditional probability density p(s|y, εi−1, γi−1)

by factorizing the terms in s and those in sT s from the exponential function.

p(s|y, ε, γ) = (2π)−
Ns
2 |Σs|−

1
2 e−

1
2

(s−µs)TΣs
−1(s−µs) (D.1)

p(s|y, ε, γ) ∝ p(y|s, ε)× p(s|γ) (D.2)

p(y|s, ε) = (2πε2)−
N
2 e−

1
2ε2

(y−Ĥs)T (y−Ĥs) (D.3)

p(s|γ) = (2πγ2)−
Ns
2 e
− 1

2γ2
(Ps)T (Ps)

(D.4)

sTΣs
−1s−2µs

TΣs
−1s+ cte = ε−2(sT ĤT Ĥs−2yT Ĥs+ cte) +γ−2sTPTPs (D.5)

1We drop the index of the iteration in the first part of the demonstration for readability purposes:
ε = εi−1 and γ = γi−1.
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Σs = (ε−2ĤT Ĥ + γ−2PTP)−1 (D.6)

µs = ε−2ΣsĤ
Ty (D.7)

• computation of the expectation based on µs and Σs and ignoring the terms that

do not depend on ε and γ because they do not influence the maximization step.2

ξi(ε, γ) = Es|y,εi−1,γi−1
[ln p(y, s|ε, γ)] (D.8)

ξi(ε, γ) = cte+ E[ln p(y|s, ε, γ)] + E[ln p(s|ε, γ)] (D.9)

= cte− 1

2ε2
E[(y − Ĥs)T (y − Ĥs)]− N

2
ln(2πε2) (D.10)

− 1

2γ2
E[(Ps)T (Ps)]− Ns

2
ln(2πγ2) (D.11)

= cte− 1

2ε2
[yTy − 2yT Ĥµs + Tr(ĤT ĤΣs) + µs

T ĤT Ĥµs] (D.12)

−N
2

ln(2πε2)− 1

2γ2
[Tr(PTPΣs) + µs

TPTPµs] (D.13)

−Ns

2
ln(2πγ2) (D.14)

After re-arranging the terms, we have:

ξi(ε, γ) = cte− 1

2ε2
T1 −

N

2
ln(2πε2)− 1

2γ2
T2 −

Ns

2
ln(2πγ2) (D.15)

• derivation with respect to ε and γ:

T1
2ε

2ε4
− N

2

4πε

2πε2
= 0 (D.16)

T2
2γ

2γ4
− Ns

2

4πγ

2πγ2
= 0 (D.17)

which leads to the final result:

ε =

√
yTy − 2yT Ĥµs + Tr(ĤT ĤΣs) + µs

T ĤT Ĥµs

N
(D.18)

γ =

√
Tr(PTPΣs) + µs

TPTPµs

Ns
(D.19)

2The index of E will be also neglected for readability purposes.
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Convergence of the parameters

In this section, we show the behavior of the parameter values during 200 EM iterations

starting from different initial conditions : γ0 = 1 and ε0 = γ0

√
λ0. The convergence

graphics are given for two different channel configurations. We note that, except for the

very small λ0 values, the algorithm manages to converge to stable parameter values.
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Figure D.1: Convergence behavior of parameter ε
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Location-based pseudonyms for

identity reinforcement

I. Tunaru, B. Denis, B. Uguen (in Proc. IEEE VTC Spring’15)

In this paper we introduce methods that strengthen the identity of end-devices in order

to prevent impersonation attacks in wireless ad hoc networks. Pseudonyms are locally

generated from RSSI for narrow band IEEE 802.15.4 standard or Round Trip - Time

of Flight (RT-ToF) measurements (optionally, along with relative clock drift estimates)

for Impulse Radio - Ultra Wideband (IR-UWB) technology. These radiolocation features

are converted into range measurements, quantized and then fed into hash functions to

produce pseudonyms. For the two benchmarked radio technologies, practical trade-offs

are illustrated depending on the input measurement accuracy under different channel

assumptions. The evaluated solution enables to securely guess the pseudonyms of trusted

neighbors with no information leakage. It also achieves advantageous low probability of

successful attacks based on brute-force or statistics-aided strategies or compared to other

impersonation detection strategies (e.g. RSSI history monitoring).

Introduction

In the emerging Internet of Things (IoT), location information may contribute to forge,

reinforce or control the ego identity of independent devices and users for security or pri-

vacy purposes. It may be also useful to establish common identities within local groups

or communities (sometimes referred to as IoT ”Bubbles of Trust”). Such information

reflects both the unique physical insertion of a device in its geographical environment

(e.g., its absolute 2D position in a given building) and its interconnections with other
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collocated fellows or entities (e.g., its relative position with respect to neighbors). This

“spatialized” identity could become a key feature in trust and reputation marks granted

to mobile devices. Besides, various wireless localization technologies have emerged in

the last past years, based on, e.g., fingerprinting with respect to WiFi access points,

Bluetooth-Low Energy beacon-based cell attachment, range-based trilateration and co-

operative positioning over Impulse Radio - Ultra Wideband (IR-UWB) or Zigbee links.

In this context, ad hoc location-based pseudonyms could be generated and used as a

protection overlay to prevent impersonation attacks. Known uniquely by the legitimate

devices (either through secure sharing or robust guess) and supposed secret with respect

to attackers, they ease authentication procedures and protect data transactions. Secure

procedures based on pseudonyms generated from stable connectivity or explicit location

information rely on the fact that any malicious entity claiming a stolen public ID or

address can neither experience nor generate the same physical awareness as that of

the legitimate peers under attack. These schemes can also be extended to generate

local secrets similarly to Physically Unclonable Functions (PUF) or to produce seeds for

Pseudo Random Number Generators (PRNG).

This paper introduces simple methods to generate local pseudonyms out of various radi-

olocation features and technologies, which could be available in turn in most IoT devices,

namely Received Signal Strength Indicator (RSSI) readings or measured Round Trip -

Time of Flight (RT-ToF) of packets over the short-range peer-to-peer communication

links. Particularly, we propose techniques that combine one-hop wireless connectivity,

relative range information and optionally, device-dependent characteristics (e.g., esti-

mated relative clock drifts, which are often required to mitigate RT-ToF measurement

biases). The aim is not only to generate local pseudonyms but also to make possible the

guess of these pseudonyms by trusted neighbors (secure legitimate inference). Simula-

tion results show tangible gains in terms of : i) legitimate inference success rate, when

integrating IR-UWB RT-ToF measurements instead of IEEE 802.15.4 RSSI readings as

quantization inputs (because of lower noise dispersion in practical environments), ii)

immunity against attackers with prior statistical knowledge about the expected range

distributions, by coupling estimated relative clock drifts with range estimations, iii) pre-

vention against impersonation attacks with the proposed range-based approaches as an

alternative to direct RSSI monitoring solutions.

In Section E, we browse through related state-of-the-art contributions. Section E presents

a generic scheme enabling location-based pseudonym generation, as well as a specific ex-

ample based on peer-to-peer range information and optionally, relative clock drifts. In

Section E, we evaluate the schemes as a function of system parameters such as the

quantization grids. Section E concludes the paper.
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State of the art

Available radiolocation technologies and modalities

Besides conventional GNSS means, alternative wireless localization solutions have been

promoted recently [163], including low data rate IR-UWB and IEEE 802.15.4/Zigbee.

Benefiting from low power consumption, these technologies also offer appealing peer-to-

peer capabilities, which are suitable for mesh and cooperative connectivity in decentral-

ized or versatile network contexts.

IR-UWB This technology enables RT-ToF and Time (Differences) of Arrival (T(D)oA)

estimation with unprecedented timing accuracy, in the order of the nanosecond (i.e.

within 30 cm spatial resolution) [135]. The RT-ToF gives direct access to the distance

between two nodes. Side efforts have also been committed to design Medium Access Con-

trol (MAC) synergetic protocols with better support for both ranging and decentralized

positioning functionalities. They typically rely on beacon-enabled Time Division Multi-

ple Access (TDMA) superframe structures [164], estimating and compensating harmful

relative clock drift effects through the use of cooperative n-way ranging transactions.

IEEE 802.15.4/Zigbee Various integrated solutions compatible with these two stan-

dards are currently available on the market. All of them can issue RSSI readings at the

physical layer for each demodulated packet. Assuming a certain path loss model, such

measurements can be exploited for parametric point-to-point range estimation [165].

However, in common environments, the expected precision of both ranging and posi-

tioning is hardly better than several meters [163].

Location-based identification and authentication

In order to prevent impersonation attacks, conventional cryptographic techniques may

not be suitable in contexts like IoT, considering the massive deployment of low-cost

and low-power entities with limited computational capabilities. Furthermore, crypto-

graphic mechanisms usually need a centralized certified entity to distribute, refresh and

revoke identity keys and signatures, which makes them more challenging to implement

in decentralized networks with temporary ad hoc inter-connections.

Alternative non-cryptographic techniques relying on the lower layers of the communica-

tion protocol have thus emerged recently [166]. However, software-based methods (e.g.,

probe request behavior at the MAC level) or hardware-based solutions (e.g., radiometric
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fingerprinting, clock skewness or PUF) are still subject to practical limitations, requiring

the exchange of numerous challenge-response messages or too specific hardware.

Additional lower layer techniques are based on the continuous monitoring of physi-

cal radio properties such as location-specific Channel State Information (CSI) or RSSI

readings to detect identity-based attacks [167]-[168]. Channel sounding is then com-

bined with hypothesis testing to determine if prior (authenticated/trusted) and current

communications are issued by one unique user. The key challenge is to collect physical

radio features over time so as to detect unexpected transients caused by impersonations.

In [166], RSSI Similarity based Authentication (SA) and Temporal RSSI Variation Au-

thentication (TRVA) methods are recalled. The SA technique aims at detecting large

unexpected RSSI changes between consecutive frames at one receiver. In Section E, SA

will be used as reference for benchmark purposes.

Finally, assuming error-free GNSS information in a WSN context [169], each sensor

can be uniquely addressed by its 2D coordinates rather than an ID. Given a pre-loaded

secret key (IK) generated from the initial ID and a system master key, each node securely

receives an additional location-based key (LK) from one mobile entity. Node-to-node

authentication and optional pairwise secret key establishment can then be applied using

these location-based keys within a pairing-based crypto-system. Security lies in the

secrecy of LK and one can verify that each node has the LK corresponding to its claimed

position for authentication.

Overall, the previous concepts have not yet been extended to benefit from cooperation

and heterogeneous radiolocation modalities for even better resilience against imperson-

ations. Related recent work [170] explores the possibility of generating symmetric secret

keys for cryptography out of relative location estimates in mobile networks.

Proposed scheme: location-based pseudonyms

Generic algorithm with heterogeneous inputs

The proposed approach consists in gradually using explicit or related location informa-

tion to generate local pseudonyms, which complete or even temporarily substitute the

IDs of wireless end-devices. Whenever multiple sources of location-dependent informa-

tion are available at a given device, one can perform heterogeneous data integration, as

follows:

PSi = f(IDi, [xi, yi], {dij}j∈Ne(i), {γij}j∈Ne(i)...) (E.1)
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where IDi is the public ID of node i, [xi, yi] are the 2D absolute Euclidean coordinates of

node i delivered by, e.g., GNSS or a WiFi-based localization system, {dij}j∈Ne(i) is the

set of measured peer-to-peer distances (possibly drift-biased, with relative clock drifts

{γij}j∈Ne(i) w.r.t. neighbors j ∈ Ne(i)). Note that much simpler characteristics (still

accounting for the ”physical insertion” of the device) could be considered as well, such

as node i’s (N − hop) connectivity w.r.t. to nodes j ∈ Ne(i).

One straightforward implementation of f(.) is a hash function. Hash functions map

inputs of different lengths to a fixed-length output, while small changes in the input

produce a completely different output. Moreover, cryptographic hash functions (e.g.

SHA-1) are deemed to be collision-resistant, meaning that there is a small probability

to find two different inputs that give the same output. This property is useful in order

to avoid pseudonym collisions between legitimate nodes but also with respect to an

attacker.

The pseudonyms between different legitimate nodes can be shared either through direct

communication during a secure short time period or by inference (i.e., the neighbors of a

given node try to guess its pseudonym to the best of their knowledge). In the inference

case, the measurements feeding the hash function are quantized in order to provide

better stability and reciprocity against measurement noise for legitimate nodes. The

setting of the quantization step is a key parameter that can be adapted online according

to empirical measurement statistics. It is obvious that inference is preferable for security

reasons. However, the choice of the method depends on the available information used

as input to the hash function. Overall we identify two preferred embodiments:

• One global pseudonym per node: the hash input can contain location informa-

tion (e.g. position, relative distances w.r.t. all the neighbors) and/or connectivity

information (e.g. adjacency information), and/or further device-dependent infor-

mation (e.g. relative clock drifts w.r.t. all the neighbors). Inferring this type

of pseudonym requires public exchanges, which, in the long term, could lead to

the full disclosure of the network characteristics and can limit the advantage with

respect to attackers. In this case, the pseudonyms must be shared securely.

• Link-dependent pseudonyms: the hash function outputs a new ID of the present

node w.r.t. each neighbor using link-dependent information (e.g. relative distance

or relative clock drift w.r.t. to the respective neighbor). In this case, the inference

is facilitated thanks to the assumed reciprocity of the input data (See Figure E.1)

and it can be achieved without any public exchange of information.

Therefore, pseudonym generation schemes rely mainly on non-complex digital operations

(quantization and hash functions) and on the ranging capabilities increasingly present
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Figure E.1: Possible block diagram of a location-based pseudonym generator.

in a large number of communicating devices. The inference phase does not increase

the complexity because it does not require any protocol overhead or any additional

processing of the measured data.

We detail hereafter one example based on the quantization of peer-to-peer range infor-

mation between two devices (from RSSI/RT-ToF measurements and optional relative

clock drift estimates). The same pseudonym generation algorithm will be used for the

evaluations in Section E.

Link-dependent pseudonyms from peer-to-peer ranges and relative clock

drifts

In this particular scheme, each node generates N pseudonyms, with which it will be

addressed by its N neighbours. As an example, the pseudonym (generated at A) that

should be used by node B to address node A is:

PSA(A) = hash([IDA||qdAB(∆d))]) (E.2)

with hash the cryptographic hash function (SHA-1 in the present simulations), || the

concatenation function, IDA the initial public ID of A, ∆d the distance quantization step,

qdAB the quantized relative distance between A and B measured at A using: i) n-way

ranging protocols and Time of Arrival (ToA) estimation to issue RT-ToF measurements

(e.g., in IR-UWB, [135]), ii) RSSI-based ranging with a path loss model (e.g., in IEEE

802.15.4, [165]).

One step further, adding hardware device-dependent information (only for RT-ToF es-

timations), the new pseudonym is:

PSA(A) = hash([IDA||qdAB(∆d)||qγAB(∆γ)]) (E.3)

under the same notations as before, with qγAB the quantized relative drift of A’s clock

with respect to B’s clock [164] (by definition, only measured at node A using the same

ranging procedures) and ∆γ the related quantization step.

The inference of A’s pseudonym without public information exchange is made possi-

ble because node B also estimates similar reciprocal characteristics: relative distance
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(dBA ∼= dAB) and optionally, relative clock drift (γBA ∼= 1/γAB), depending on the cho-

sen technology and features. Asymmetries in the quantization inputs are thus mainly

caused by measurement noise, which affects the unitary ToA estimates producing the

RT-ToF/range estimations and by power fading for RSSI measurements. The legitimate

peer B will then generate an inferred pseudonym for A:

PSB(A) = hash([IDA||qdBA(∆d)||q(1/γBA)(∆γ)]) (E.4)

An attacker E (passively) eavesdropping or (actively) exchanging packets with nodes

A and B can estimate neither the relative distance between A and B (because of its

different location), nor the relative clock drift, which is inherent to both the link and the

hardware characteristics of the legitimate peers. Moreover, if E compromises one node,

it cannot find the pseudonyms that are used on the other non-adjacent links. Therefore,

the attacker has to make a blind (or eventually statistics-assisted) guess on the generated

pseudonym in order to obtain PSE(A).

Performance evaluation and discussion

In order to evaluate the robustness of our proposal with respect to noise over legitimate

links, as well as its security in the presence of an attacker, we define two metrics:

• the probability of a successful inference of the pseudonym by a legitimate user :

Pl = P [PSB(A) = PSA(A)] evaluated through Monte Carlo simulations, consid-

ering 1000 distinct network realizations of 10 nodes each, with an average node

degree between 7 and 8 neighbors and with uniformly distributed coordinates in a

20x20m area.

• the probability of a successful guess by an attacker: P(p)BF = P [PSE(A) =

PSA(A)] evaluated by numerical integration over the internode distances in two

cases: i) brute-force (BF) attack (i.e., the attacker makes a uniform random guess

on the value of the internode distance and/or relative clock drift); ii) probabilistic

brute-force (pBF) or statistics-aided guess (i.e., the attacker knows a priori the

distribution of the true internode distances in the area and makes his best guess

accordingly).

The successful attack probabilities (when using both range and drift information for

quantization) are computed as follows:

P(p)BF =

∫ Rmax

0
pR(r)P(p)BF |R(r) dr (E.5)
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P(p)BF |R(r) = Prob[PSE(A) = PSA(A)|r] (E.6)

= P d(p)BF (r)× P γBF (E.7)

= Prob[q̃dAB = qdAB|r]× Prob[q̃γAB = qγAB] (E.8)

withRmax the maximum internode distance/range, pR(r) the a priori probability density

function of the internode distance for uniformly distributed nodes, R the random variable

representing the legitimate(A-B) internode distance, f̃ the guessed feature f ∈ {qd, qγ}
at the attacker, P d(p)BF the probability of guessing the quantized distance based on: i)

BF : P dBF (r) = ∆d
Rmax

or ii) pBF: P dpBF (r) = pR(r), P γBF the probability of guessing the

quantized drift, independently of the internode distance: P γBF =
∆γ

1+δ
1−δ−

1−δ
1+δ

where δ is the

maximum clock imprecision (specified by the manufacturer).

We perform three studies. Firstly, we investigate the differences between the quantiza-

tion of the estimated distances issued from two different technologies, namely Narrow-

band (NB) IEEE 802.15.4 at 2.4 GHz and IR-UWB. The relative distances are computed

from RSSI and RT-ToF measurements, respectively in NB and IR-UWB cases (both un-

der typical radio assumptions and parameters). Secondly, we evaluate the performances

of pseudonym generation schemes jointly based on distance and drift for the IR-UWB

case only. Finally, we compare our impersonation prevention method to an RSSI-based

monitoring method [166].

Pseudonyms from NB & IR-UWB range estimates

The received power measurements reflected by RSSI readings in NB are generally ex-

pressed (in dB) as a function of a log-normal distance-dependent path loss model [165],

whose key parameters are PLref , the path loss reference at distance dref , α, the path

loss exponent, and XS , random centered Gaussian shadowing with standard deviation

σs.

In our simulations, we consider assigning to all the feasible links some random channel

configurations (i.e., Line of Sight (LOS), Non Line of Sight (NLoS) and severe NLoS

(NLoS2)), along with their corresponding radio parameters (i.e., ToA standard devia-

tion for RT-ToF vs. shadowing standard deviation, reference path loss and path loss

exponent for RSSI), depending on the actual internode distance like in [171]. Once each

link configuration has been allocated, one can use the associated conditional model pa-

rameters to estimate the range. For NB RSSI-based ranging, we consider the median

estimator from [165], with α = [1.7, 3, 5] and σs = [0.5, 3, 5] dB respectively in [LoS,
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Figure E.2: Performance of range-based pseudonym generation : legitimate inference
success probability (Pl) and attack success probability (P(p)BF )

NLoS and NLoS2]. For IR-UWB RT-ToF estimates, we consider the standard deviation

of ToA estimation noise as [1, 2, 3] ns respectively in [LoS, NLoS, and NLoS2], accord-

ing to empirical observations from [94]. Relative clock imprecisions are assumed to be

bounded by ±δ = 20 ppm (worst case), which is representative for low-cost embedded

oscillators.

In Figure E.2, we report the legitimate agreement probabilities for distance quantization

from NB and IR-UWB estimates with two link configurations (only LoS and a mixture

(MIX) of LOS, NLoS and NLoS2). Pseudonym generation from IR-UWB RT-ToF esti-

mates is shown to be more robust to measurement noise for the same link configurations.

This is due to the more advanced ranging capabilities of the IR-UWB technology com-

pared to NB technologies (i.e., larger bandwidth implies more precision). The difference

is significant in the LOS case where the detection of ToA of the first multipath compo-

nent for IR-UWB is more robust than in the NLOS case. We also report the brute-force

and the probabilistic brute-force successful attack probabilities as a function of the dis-

tance quantization step and identify advantageous quantization steps that maximize

the distance between the legitimate agreement and the successful attack curves (e.g.

∆d ∈ (1, 10) m).

Pseudonyms from IR-UWB range & clock drift estimates

Using the same framework as before, we incorporate the drift into the quantization pro-

cedure (we choose a fixed distance quantization step ∆d = 10m). When adding the
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Figure E.3: Performance of pseudonym generation based on relative range vs. jointly
relative range and clock drift measurements at fixed ∆d = 10 m

relative drift information, both the legitimate agreement and the successful attack prob-

abilities decrease (Figure E.3) because both the legitimate inference and the attacker’s

guess become harder. Nevertheless, incorporating the drift presents an advantage with

respect to the probabilistic brute-force strategy at relatively high values of ∆γ : Pl with

drift approaches the no-drift Pl while the new successful attack probability PBF is al-

ways lower than the no-drift PpBF . As the attacker has no indication on the possible

value of the relative clock drift (hardware characteristic), the brute-force solution on

the drift value is the only option, which makes the overall guess of the pseudonym more

difficult. In conclusion, pseudonyms should be generated from reciprocal but uniformly

distributed information in order to achieve both a satisfactory legitimate agreement

probability and a low successful attack probability.

Comparison with RSSI monitoring authentication

The probability of a successful attack in RSSI monitoring methods (Psa) depends on

the variance of the shadowing (σ2
s) that affects the RSSI readings and on the distance

between the attacker and a legitimate node (dAE) when averaging over the distances

between the legitimate nodes (dAB). The averaging is performed in the same way as in

Eq. (E.5) by replacing P(p)BF |R with the probability of misdetection of an attacker as

a legitimate node (conditioned on the range dAB). We assume that the threshold for

impersonation detection at the legitimate nodes is set at ±3σs from the mean empirical

RSSI value. Note that the mean RSSI value and dAB are linked by a deterministic

formula based on the propagation model mentioned in Section E. From Figure E.4,

we can observe that even distance-based pseudonym generation with relatively large
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Figure E.4: Comparison of the successful attack probabilities in pseudonym genera-
tion vs. RSSI monitoring for different attacker-legitimate distances dAE

∆d (e.g., 10m) outperform most of the RSSI-based authentication for medium to large

shadowing variances.

Conclusion

In this paper we have investigated and discussed the possibility to generate, infer and/or

share local pseudonyms out of various sources of radiolocation information for more se-

cure IoT transactions and reinforced device identity. For the link dependent pseudonyms,

we have shown that they could be securely guessed by legitimate neighbors, while achiev-

ing relatively low impersonation success rates. However, the absolute value of the attack

success rates suggest that link dependent pseudonyms should be used as an authentica-

tion overlay.

Remaining challenges concern the degraded precision and the asymmetry of input mea-

surements in typical environments. The performance of the proposed algorithms could

be assessed on real integrated devices and field measurements. Mobility support is also

challenging for the perennial tracking and management of new generated location-based

IDs. It should also be noted that the pseudonyms provide a security overlay as long as

the initial radiolocation measurements phase is not compromised by an active attacker.

However, in mobility scenarios, pseudonyms can be easily refreshed in order to counter

passive attacks (e.g., eavesdropping).
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In wireless decentralized networks security and privacy become more challenging because

of the decentralized architecture and sometimes low-complexity profile. Confidentiality

of the transmissions is usually achieved by symmetric cryptography, which implies a

distribution of identical secret keys between the legitimate nodes. Classic solutions for

symmetric key distribution can be too complex from a computational or infrastructural

point of view. An alternative to these key management techniques is the physical layer

key generation that exploits the radio channel as a source of common information. This

paper is dedicated to the generation of secret keys from IR-UWB channels using low-

power integrated devices. We investigate the possibility to generate identical secret keys

in practical environments (e.g., typical indoor rooms, possibly occupied) and operating

conditions (e.g., under mobility). The main challenge is to obtain reciprocal and random

keys at an acceptable rate. Taking into account these three criteria (reciprocity, random-

ness, and key length), we propose an adapted quantization scheme for the measured CIRs

acquired with embedded devices.

Introduction

Because of their broadcast nature, wireless networks can suffer from eavesdropping at-

tacks. Therefore, one of the main issues for reliable communication is security, more

specifically confidentiality of exchanges. This is usually achieved by symmetric-key cryp-

tography, which relies on encryption and decryption operations using a secret shared key
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between the two legitimate users. So one of the main challenges is how to distribute this

common key among legitimate users in a secure way.

Among the classical key distribution approaches there are the Key Distribution Center

(KDC) [172], the Diffie Hellman (D-H) exchange protocol [7] and asymmetric cryptog-

raphy. In the KDC method there is a third party who is responsible for the creation (or

the storage) and distribution of keys among the users. This method is highly central-

ized, thus it is not adapted to ad-hoc/decentralized mobile networks. D-H exchange is

a decentralized method but it includes expensive exponential operations, which should

be avoided for resource constrained devices. Lastly, asymmetric cryptography relies on

cumbersome certification operations for the public keys.

Physical layer security [18] includes an alternative approach for symmetric key distri-

bution. It allows to extract a common secret key from the radio channel by measuring

its features. The direct and reverse channels between two legitimate users (Alice and

Bob) are theoretically reciprocal, but noise and other transmission artifacts can produce

slightly different measurements. However, if an attacker, Eve, situated in a different

position than Bob, will try to generate the same key, she will not succeed because of the

spatial decorrelation of radio channels under certain distance and environmental condi-

tions (i.e., the channel between Alice and Bob is uncorrelated with the channel between

Alice and Eve).

The procedure of physical layer key generation can be separated in four steps [26]:

• Channel probing used to collect channel measurements by Alice and Bob. This step

also includes post-processing in order to extract randomness from the measured

signals.

• Quantization used to convert the extracted channel measurements into bits.

• Reconciliation used to correct random errors caused by imperfect reciprocity with

the help of error correction codes such as Reed-Solomon or LDPC codes. During

this procedure, the parity information is exchanged over a public channel and a

certain amount of bit information will be revealed to Eve.

• Privacy amplification used to eliminate Eve’s partial information about the key

and the correlation among the bits.

Herein, we focus on the two first steps: post-processing of the channel acquisitions and

quantization in order to produce appropriate raw keys.

Regarding quantization, one can apply several types of algorithms (Figure F.1). For

example, One-level bit extraction means comparing the samples with a fixed threshold.
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Figure F.1: Examples of types of quantization algorithms

If a sample is below the threshold the bit is set to “0”, otherwise it is set to “1”. It is a

quite intuitive method, which guarantees a certain key generation rate (1 bit per sample)

and a quite low mismatch rate, but keys might not be random enough. Quantization

with Guard-band discards samples within a guard-band of the quantization threshold in

order to obtain more reciprocal signals. It also implies that an additional sharing over a

public channel of the discarded samples is needed. According to Adaptive Quantization,

thresholds are adapted to each block of the received signal. Therefore every block is

quantized individually, for example based on the mean value and standard deviation of

its samples’ amplitudes. The main advantage of such schemes is the improved random-

ness. Instead of using guard-bands, [104] illustrates “Channel Quantization Alternating”

(CQA) bit extraction scheme. In this method they combine quantization and reconcil-

iation procedures. The main idea is that Alice quantizes her sequence and sends some

information about it (a quantization map) to Bob through the public channel. After

this, Bob quantizes his sequence using the obtained information. This helps Bob to

reduce the error probability of his sequence.

This study is concerned with the generation of secret keys using Channel Impulse Re-

sponses obtained from IR-UWB low-complexity nodes developed at CEA-Leti [94]. The

generated keys are evaluated in terms of reciprocity, randomness and length. Also, a new

quantization method adapted to the signals issued by the employed nodes is proposed.

The remainder of the study is organized as follows. The first section introduces the

measurement campaign, shows the environment conditions in which the measurements

took place, and describes the main metrics employed in this study. In the second section,

we show the limitations of amplitude quantization for our specific signals. The proposed

solution, analysis and the evaluation of results are presented in the third section. Finally,

we conclude the study and provide several perspectives for further work.
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Experimental setup

Communication protocol

For obtaining a CIR pair we use the output of low-power integrated IR-UWB devices

initially designed for localization purposes (i.e., TCR nodes [94]). Two sensor nodes

have been used in our experiments. One of them is connected to a computer in order to

transmit and save all the collected data by both of them. It is the main node and we call

it Coordinator. The second one (Remote node) is not connected to the PC and it sends

all its data to the Coordinator. Figure F.2 illustrates the structure of the communication

protocol between these nodes. The time gap between the bidirectional measurements is

7.5 ms and the one between consecutive measurements 150.7 ms.

Figure F.2: Structure of the communication protocol

Experimental scenarios

The measurements took place in three separate rooms under different conditions of

mobility, occupancy (with or without people) and geometry. We created three scenarios:

• The static scenario took place in a Laboratory with metallic equipment and fur-

niture but without people. This is the simplest scenario in terms of reciprocity,

because the nodes were not mobile and they always have LOS. The acquisition

time was of approximately 2-3 min for every Tx-Rx position.

• The occupied scenario took place in the Coffee room. At any time there were at

least a few people inside. The acquisition time was of 4-5 min for every Tx-Rx

position.

• The mobile scenario took place in the Meeting room. As it can be seen from Figure

F.3, the room is equipped with a U-shape table. There was a fixed position for the

Coordinator at the end of the table. The Remote node was moving around table

(dashed line) and did 3 circles.
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Figure F.3: Plan of the Meeting room

Signal preprocessing

There are two main problems caused by hardware and protocol limitations: signal desyn-

chronization and predictive signal structure.

For solving the desynchronization problem between the bidirectional signals (see Figure

F.5), we test two methods: MAXCORR and THRESHOLD.

The idea of MAXCORR is to find the shift (m∗), which maximizes the correlation

between the fixed vector c (a CIR measured by the Coordinator) and the m-shifted

vector b (a CIR measured by the Remote node).

m∗ = argmax
m

f(m), (F.1)

f(m) =


∑N+m
n=1 (cn−m−µc)(rn−µr)

N+m , m < 0;∑N−m
n=1 (cn−µc)(rn+m−µr)

N−m , m > 0.
(F.2)

where N is the length of vectors b and c, m is a shift (m < 0 means that the vector

is shifted to the right, m > 0 means that it is shifted to the left), m ≤ 0.35N , µc is

the mean value of the vector c, µb is the mean value of the vector b, cn and bn are

the nth elements of vectors c and b. This method is optimal but in a real scenario we

cannot use it because one node is not aware about the measurements from the other

node. This scheme will be used as a reference to estimate the optimal performance of

key generation.
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In the THRESHOLD scheme one sets a certain noise threshold and puts the first value

above the threshold on the first position. This method can be applied to both nodes

independently, thus it can be easily implemented in a realistic key generation scenario.

The reciprocity between the two bidirectional measurements after synchronization is

measured using the Pearson linear correlation coefficients (i.e., the reciprocity coeffi-

cients). In order to compare the THRESHOLD synchronization scheme and the optimal

MAXCORR synchronization, we show in Figure F.4 the histogram of the signed dif-

ference between the reciprocity coefficients (i.e., MAXCORR - THRESHOLD) after

synchronization with these two methods. As expected, MAXCORR synchronization

gives better results because on average MAXCORR reciprocity coefficients have a gain

of 0.4.
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Figure F.4: Histogram of the difference between the reciprocity coefficients obtained
with MAXCORR and THRESHOLD

Typical CIRs have some noisy parts at the beginning and at the end (see Figure F.5).

In order to avoid these correlated samples, we set the noise threshold independently on

each side and we crop the main part of the signal. Subsequently, we send through the

public channel the sizes of the obtained sequences at each node and additionally crop

the longer one in order to match the lengths.

Preliminary amplitude quantization

After channel probing both parties have to quantize the extracted channel measurements

into bits. On the one hand, after applying the quantization scheme, keys should have

small mismatches in order to be able to correct them with an error correction code

without leaking too much information on the public channel. On the other hand, keys
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Figure F.5: Example of the typical bidirectional CIRs

should be random enough, e.g., they should pass the NIST tests [102]. Finally, they

should also be as long as possible.

Firstly, we test several quantization approaches that exploit the signal amplitude of

cropped or uncropped CIRs as the input data: 1-bit (or one-level), 2-bit and 2-bit

with guard bands (GBs). The main parameters for each quantization algorithm are the

thresholds that divide the amplitude space into cells. Our thresholds are defined inde-

pendently for each node. They are computed offline for the whole set of measurements.

Also, we concatenate 10 consecutive CIRs for obtaining sufficiently long keys. Table F.1

shows the mismatch rates for various quantization algorithms and scenarios.

Table F.1: Comparison of different quantization algorithms in Static (Mobile) sce-
narios, with (without) signal cropping

Mismatch
Entire signal Cropped signal

Quantization algorithm Static Mobile Static Mobile
1-bit 0.14 0.25 0.29 0.33
2-bit 0.26 0.33 0.41 0.35

2-bit + GBs 0.22 0.24 0.26 0.29

Unfortunately, in our particular case, such kind of quantization algorithms give unac-

ceptable high mismatch rate ( i.e., always higher than 14%, even for static scenario and

for the simplest one-level extraction algorithm). Moreover, it is not possible to use the

entire uncropped signal for key generation because of the randomness defects of the ob-

tained keys. One can clearly see this feature in Figure F.6 that compares keys obtained

using 1-bit quantization on cropped and uncropped signals, where white corresponds to

“1” and black corresponds to “0” bits).
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Figure F.6: The keys after 1-bit quantization for static scenario before and after
cropping

In conclusion, concatenation of uncropped signals gives keys that can be predictable.

The extraction of the main part of a signal (or cropping) helps to avoid such kind

of problems but leads to higher mismatch rates. Thus a new quantization scheme is

required.

Proposed solution

Before searching for a new quantization input, it is reasonable to refine the signal by

passing it through a moving average filter. The filtering can help make the signals more

reciprocal, because it makes them smoother. Figures F.7 and F.8 show the signals before

and after filtering with a window size equal to 10. This choice is made so as to obtain

a reciprocity coefficient of minimum 0.9.
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Figure F.7: Signals before filtering.
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Figure F.8: Signals after filtering.

The filter helps decreasing the mismatch rate but we still have a problem with ran-

domness. The samples of the signal become highly correlated and cannot be directly

quantized. The idea of the new quantization scheme is to divide the signals in windows

with a fixed number of samples inside, then to set a certain threshold and to quantize

the number of samples above the threshold according to a one-level quantization scheme.

The proposed scheme gives a rather promising mismatch (less than 10%). In this method

the length of the key becomes smaller and we need more time for obtaining a key of

required length, which translates into a concatenation of more CIRs. For this reason

the measurements in the meeting room and room with occupancy were repeated with

longer acquisition time (15 minutes) and we concatenated 40 CIRs for obtaining one key.

Therefore this scheme has a lower key rate (∼ 18 bitss ) comparing to amplitude-based

quantization, but it would still be higher than RSSI-based key generation algorithms

employing the same communication protocol. Figure F.9 illustrates the keys after the

moving average filtering and the new quantization.

Figure F.9: The keys after the moving average filtering and the new quantization
scheme applying.
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Table F.2: Comparison of different quantization algorithms in Static (Mobile) sce-
narios, with (without) signal cropping.

Test Occupancy scenario Mobile scenario
The Frequency test 98/98 92/97

Frequency test in a block 98/98 95/97
The Cumulative Sums test 98/98 93/97

The Runs test 97/98 94/97
The Entropy test 98/98 87/97

In order to further investigate the random character of the keys after the new quanti-

zation scheme we applied the NIST tests. For the measurement in the Coffee room we

obtain 98 keys of 108 bits and for the measurement in the Meeting room 97 keys of the

same length. Table F.2 shows that a good percentage of keys pass the tests.

Conclusion

The generation of secret keys from IR-UWB channels, using low-complexity devices, has

been investigated in this work. The measurements were performed in different environ-

ments. Estimated channel impulse responses were used as an input for key generation.

After channel probing, CIRs were synchronized, cropped and quantized in order to ob-

tain raw secret keys. Standard amplitude quantization methods are not suitable for

these particular devices, thus we proposed an alternative technique based on filtering

and quantization of the number of samples above a threshold. The final implementation

achieves good performance in terms of reciprocity and randomness. Nevertheless it has

a lower key rate than amplitude-based quantization.

Further work could continue the investigation of the secret key generation procedure in

other environmental conditions. For example, it would be interesting to test a mix of

mobile and occupied scenarios. The optimization of the final quantization parameters

and realistic synchronization methods could also be studied. Finally, the impact of

public information (e.g., cropping and quantization parameters) on the predictability of

the keys should be considered as well.
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[21] I. Csiszàr and J. Korner, “Broadcast Channels with Confidential Messages,” IEEE

Transactions on Information Theory, vol. 24, no. 3, pp. 339–348, May 1978.

[22] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian Wire-tap Channel,” IEEE

Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, July 1978.

[23] J. Barros and M. Rodrigues, “Secrecy capacity of wireless channels,” in Proc. IEEE

International Symposium on Information Theory, 2006, July 2006, pp. 356–360.

[24] M. Bloch, J. Barros, M. Rodrigues, and S. McLaughlin, “Wireless information-

theoretic security,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp.

2515–2534, June 2008.

[25] W. Trappe, “The challenges facing physical layer security,” IEEE Communications

Magazine, vol. 53, no. 6, pp. 16–20, June 2015.



Bibliography 163

[26] K. Zeng, “Physical Layer Key Generation in Wireless Networks: Challenges and

Opportunities,” IEEE Communications Magazine, vol. 53, no. 6, pp. 33–39, June

2015.

[27] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krish-

namurthy, “On the Effectiveness of Secret Key Extraction from Wireless Signal

Strength in Real Environments,” in Proc. ACM MobiCom’09, Beijing, China, Sep.

2009.

[28] M. Madiseh, S. He, M. McGuire, S. Neville, and X. Dong, “Verification of Se-

cret Key Generation from UWB Channel Observations,” in Proc. IEEE ICC’09,

Dresden, Germany, Jun. 2009, pp. 1–5.

[29] S. Tmar-Ben Hamida, J.-B. Pierrot, and C. Castelluccia, “Empirical Analysis

of UWB Channel Characteristics for Secret Key Generation in Indoor Environ-

ments,” in Proc. IEEE PIMRC’10, Istanbul, Turkey, Sep. 2010.

[30] N. Patwari, J. Croft, S. Jana, and S. K. Kasera, “High-Rate Uncorrelated Bit

Extraction for Shared Secret Key Generation from Channel Measurements,” IEEE

Transactions on Mobile Computing, vol. 9, no. 1, pp. 17–30, Jan. 2010.

[31] S. Tmar-Ben Hamida, J.-B. Pierrot, and C. Castelluccia, “On the Security of

UWB Secret Key Generation Methods against Deterministic Channel Prediction

Attacks,” in Proc. IEEE Vehicular Technology Conference (VTC2012-Fall), Que-

bec, Canada, Sep. 2012.

[32] U. Maurer, “Secret Key Agreement by Public Discussion from Common Informa-

tion,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 733–742, May

1993.

[33] R. Ahlswede and I. Csiszar, “Common Randomness in Information Theory and

Cryptography. I. Secret Sharing,” IEEE Transactions on Information Theory,

vol. 39, no. 4, pp. 1121–1132, Jul. 1993.

[34] U. Maurer and S. Wolf, “Unconditionally Secure Key Agreement and the Intrinsic

Conditional Information,” IEEE Transactions on Information Theory, vol. 45,

no. 2, pp. 499–514, Mar. 1999.

[35] S. Mjlosnes, “Chapter 5. Quantum Cryptography,” in A Multidisciplinary

Introduction to Information Security. CRC Press, 2011. [Online]. Available:

http://arxiv.org/pdf/1108.1718.pdf

[36] D. Moskovich, “An Overview of the State of the Art for Practical Quantum Key

Distribution,” 2015. [Online]. Available: http://arxiv.org/abs/1504.05471

http://arxiv.org/pdf/1108.1718.pdf
http://arxiv.org/abs/1504.05471


Bibliography 164

[37] T.-H. Chou, S. Draper, and A. Sayeed, “Key Generation Using External Source

Excitation: Capacity, Reliability, and Secrecy Exponent,” IEEE Transactions on

Information Theory, vol. 58, no. 4, pp. 2455–2474, Apr. 2012.

[38] P. Huang and X. Wang, “Fast Secret Key Generation in Static Wireless Networks:

A Virtual Channel Approach,” in Proc. IEEE INFOCOM 2013, April 2013, pp.

2292–2300.

[39] P. K. Gopala, L. Lai, and H. El Gamal, “On the Secrecy Capacity of Fading

Channels,” IEEE Transactions on Information Theory, vol. 54, no. 10, pp. 4687–

4698, Oct. 2008.

[40] S. Xiao, H. Pishro-Nik, and W. Gong, “Dense Parity Check Based Secrecy Sharing

in Wireless Communications,” in Proc. IEEE Global Telecommunications Confer-

ence (GLOBECOM ’07), Nov 2007, pp. 54–58.

[41] A. Agrawal, Z. Rezki, A. Khisti, and M.-S. Alouini, “Noncoherent Capacity of

Secret-Key Agreement With Public Discussion,” IEEE Transactions on Informa-

tion Forensics and Security, vol. 6, no. 3, pp. 565–574, Sep. 2011.

[42] L. Lai, Y. Liang, and H. Poor, “A Unified Framework for Key Agreement Over

Wireless Fading Channels,” IEEE Transactions on Information Forensics and Se-

curity, vol. 7, no. 2, pp. 480–490, Dec. 2012.

[43] A. Khisti, “Secret-Key Agreement over Non-Coherent Block Fading Channels with

Public Discussion,” Submitted to IEEE Transactions on Information Theory, 2013.

[44] H. Koorapaty, A. Hassan, and S. Chennakeshu, “Secure Information Transmission

for Mobile Radio,” IEEE Communications Letters, vol. 4, no. 2, pp. 52–55, Feb

2000.

[45] S. Severi, G. Abreu, G. Pasolini, and D. Dardari, “A Secret Key Exchange Scheme

for Near Field Communication,” in Proc. IEEE Wireless Communications and

Networking Conference (WCNC), Sep. 2014.

[46] D. Simmons, N. Bhargav, J. Coon, and S. Cotton, “Physical Layer Security Over

OFDM-Based Links: Conjugate-and-Return,” in Proc. IEEE Vehicular Technology

Conference, May 2015.

[47] Y. Shen and M. Z. Win, “Intrinsic Information of Wideband Channels,” IEEE

Journal on Selected Areas in Communications, vol. 31, no. 9, Sep. 2013.

[48] U. Maurer and S. Wolf, “Secret-Key Agreement over Unauthenticated Public

Channels-Part I. Definitions and a Completeness Result,” IEEE Transactions on

Information Theory, vol. 49, no. 4, pp. 822–831, Apr. 2003.



Bibliography 165

[49] ——, “Secret-key Agreement Over Unauthenticated Public Channels-Part II: Pri-

vacy Amplification,” IEEE Transactions on Information Theory, vol. 49, no. 4,

pp. 839–851, Apr. 2003.

[50] L. Lai, Y. Liang, and H. Poor, “Key Agreement over Wireless Fading Channels

with an Active Attacker,” in Proc. 48th Annual Allerton Conference on Commu-

nication, Control, and Computing (Allerton), Sept 2010, pp. 1391–1396.

[51] H. Li, L. Lai, S. Djouadi, and X. Ma, “Key establishment via common state

information in networked control systems,” in Proc. American Control Conference

(ACC), June 2011, pp. 2234–2239.

[52] M. Forman and D. Young, “A Generalized Scheme for the Creation of Shared

Secret Keys through Uncorrelated Reciprocal Channels in Multiple Domains,” in

Proc. 18th International Conference on Computer Communications and Networks

(ICCCN), Aug. 2009, pp. 1–8.

[53] K. Ren, H. Su, and Q. Wang, “Secret Key Generation Exploiting Channel Charac-

teristics in Wireless Communications,” IEEE Wireless Communications, vol. 18,

no. 4, pp. 6–12, August 2011.

[54] A. Hassan, W. Stark, J. Hershey, and S. Chennakeshu, “Cryptographic Key Agree-

ment for Mobile Radio,” Digital Signal Processing, vol. 6, no. 4, pp. 207–212, Oct.

1996.

[55] Q. Wang, H. Su, K. Ren, and K. Kim, “Fast and Scalable Secret Key Generation

Exploiting Channel Phase Randomness in Wireless Networks,” in Proc. IEEE

INFOCOM’11, Shanghai, China, Apr. 2011, pp. 1422–1430.

[56] A. Sayeed and A. Perrig, “Secure Wireless Communications: Secret Keys Through

Multipath,” in Proc. IEEE ICASSP’08, Las Vegas, NV, USA, Mar. 2008, pp. 3013–

3016.

[57] M. Tope and J. McEachen, “Unconditionally Secure Communications over Fading

Channels,” in Proc. MILCOM’01, Piscataway, NJ, USA, Oct. 2001, pp. 54–58.

[58] T. Aono, K. Higuchi, T. Ohira, B. Komiyama, and H. Sasaoka, “Wireless Secret

Key Generation Exploiting Reactance-Domain Scalar Response of Multipath Fad-

ing Channels,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 11,

pp. 3776–3784, Nov. 2005.

[59] B. Azimi-Sadjadi, A. Mercado, A. Kiayias, and B. Yener, “Robust Key Generation

from Signal Envelopes in Wireless Networks,” in Proc. ACM CCS’07, Alexandria,

VA, USA, Oct. 2007.



Bibliography 166

[60] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik, “Radio-Telepathy:

Extracting a Secret Key from an Unauthenticated Wireless Channel,” in Proc.

ACM MobiCom’08, Sep. 2008, pp. 128–139.

[61] P. Barsocchi, S. Chessa, I. Martinovic, and G. Oligeri, “AmbiSec: Securing Smart

Spaces Using Entropy Harvesting,” in Proc. AmI’10, Málaga, Spain, Nov. 2010,

pp. 73–85.

[62] S. Ali, V. Sivaraman, and D. Ostry, “Secret Key Generation Rate vs. Recon-

ciliation Cost Using Wireless Channel Characteristics in Body Area Networks,”

in Proc. IEEE/IFIP 8th International Conference on Embedded and Ubiquitous

Computing (EUC), Dec 2010, pp. 644–650.

[63] Y. Wei, K. Zeng, and P. Mohapatra, “Adaptive Wireless Channel Probing for

Shared Key Generation,” in Proc. IEEE INFOCOM’11, Shanghai, China, Apr.

2011, pp. 2165–2173.

[64] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam,

“Information-Theoretically Secret Key Generation for Fading Wireless Channels,”

IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, pp. 240–

254, Jun. 2010.

[65] X. Wu, Y. Song, C. Zhao, and X. You, “Secrecy Extraction from Correlated Fading

Channels: An Upper Bound,” in Proc. WCSP’09, Nanjing, China, Nov. 2009, pp.

1–3.

[66] M. Wilhelm, I. Martinovic, and J. Schmitt, “Key Generation in Wireless Sensor

Networks Based on Frequency-selective Channels: Design, Implementation,

and Analysis,” ArXiv.org, Tech. Rep., May 2010. [Online]. Available:

http://arxiv.org/pdf/1005.0712v1

[67] Y. Liu, S. Draper, and A. Sayeed, “Exploiting Channel Diversity in Secret Key

Generation From Multipath Fading Randomness,” IEEE Transactions on Infor-

mation Forensics and Security, vol. 7, no. 5, pp. 1484–1497, Oct 2012.

[68] T. Mazloum, F. Mani, and A. Sibille, “Analysis of Secret Key Robustness in

Indoor Radio Channel Measurements,” in Proc. IEEE 81st Vehicular Technology

Conference (VTC Spring), May 2015, pp. 1–5.

[69] S. Yasukawa, H. Iwai, and H. Sasaoka, “Adaptive Key Generation in Secret Key

Agreement Scheme based on the Channel Characteristics in OFDM,” in Proc.

ISITA’08, Auckland, New Zealand, Dec. 2008, pp. 1–6.

http://arxiv.org/pdf/1005.0712v1


Bibliography 167

[70] Y. El Hajj Shehadeh, O. Alfandi, and D. Hogrefe, “Towards Robust Key Extrac-

tion from Multipath Wireless Channels,” Journal of Communications and Net-

works, vol. 14, no. 4, pp. 385–395, Aug. 2012.

[71] K. Zeng, D. Wu, A. Chan, and P. Mohapatra, “Exploiting Multiple-Antenna Di-

versity for Shared Secret Key Generation in Wireless Networks,” in Proc. IEEE

INFOCOM’10, San Diego, CA, USA, Mar. 2010.

[72] J. Wallace, “Secure Physical Layer Key Generation Schemes: Performance and

Information Theoretic Limits,” in Proc. IEEE ICC’09, Dresden, Germany, Jun.

2009, pp. 1–5.

[73] G. Pasolini and D. Dardari, “Secret key generation in correlated multi-dimensional

Gaussian channels,” in Proc. IEEE International Conference on Communications

(ICC), Jun. 2014, pp. 2171–2177.

[74] B. Quist and M. Jensen, “Maximizing the Secret Key Rate for Informed Radios

under Different Channel Conditions,” IEEE Transactions on Wireless Communi-

cations, vol. 12, no. 10, pp. 5146–5153, October 2013.

[75] A. Kitaura, T. Sumi, K. Tachibana, H. Iwai, and H. Sasaoka, “A Scheme of Pri-

vate key Agreement based on Delay Profiles in UWB Systems,” in IEEE Sarnoff

Symposium’06, Princeton, NJ, USA, Mar. 2006, pp. 1–6.

[76] J. Huang and T. Jiang, “Dynamic Secret Key Generation Exploiting Ultra-

Wideband Wireless Channel Characteristics,” in Proc. IEEE Wireless Commu-

nications and Networking Conference (WCNC), March 2015, pp. 1701–1706.

[77] R. Wilson, D. Tse, and R. A. Scholtz, “Channel Identification: Secret Sharing Us-

ing Reciprocity in Ultrawideband Channels,” IEEE Transactions on Information

Forensics and Security, vol. 2, no. 3, Sep. 2007.

[78] M. Madiseh, M. McGuire, S. Neville, and A. Shirazi, “Secret Key Extraction in Ul-

tra Wideband Channels for Unsynchronized Radios,” in Proc. CNSR’08, Halifax,

Canada, May 2008, pp. 88–95.

[79] S. Tmar-Ben Hamida, J.-B. Pierrot, and C. Castelluccia, “An Adaptive Quantiza-

tion Algorithm for Secret Key Generation Using Radio Channel Measurements,”

in Proc. NTMS’09, Cairo, Egypt, Dec. 2009.

[80] F. Marino, E. Paolini, and M. Chiani, “Secret Key Extraction from a UWB Chan-

nel: Analysis in a Real Environment,” in Proc. IEEE International Conference on

Ultra-Wideband (ICUWB), Sep. 2014.



Bibliography 168

[81] M. Madiseh, S. Neville, and M. McGuire, “Time Correlation Analysis of Secret

Key Generation via UWB Channels,” in Proc. IEEE GLOBECOM’10, Miami,

Florida, USA, Dec. 2010, pp. 1–6.

[82] O. Gungor, F. Chen, and C. Koksal, “Secret Key Generation from Mobility,”

in Proc. IEEE GLOBECOM Workshops’11, Houston, TX, USA, Dec. 2011, pp.

874–878.

[83] A. Badawy, T. Khattab, T. El-Fouly, A. Mohamed, D. Trinchero, and C.-F. Chi-

asserini, “Secret Key Generation Based on AoA Estimation for Low SNR Condi-

tions,” in IEEE Vehicular Technology Conference (VTC Spring), May 2015, pp.

1–7.

[84] R. Mehmood, J. Wallace, and M. Jensen, “Key Establishment Employing Re-

configurable Antennas: Impact of Antenna Complexity,” IEEE Transactions on

Wireless Communications, vol. 13, no. 11, pp. 6300–6310, Nov 2014.

[85] S. Gollakota and D. Katabi, “Physical Layer Wireless Security Made Fast and

Channel Independent,” in Proc. IEEE INFOCOM, April 2011, pp. 1125–1133.

[86] A. Limmanee and W. Henkel, “Secure Physical-Layer Key Generation Protocol

and Key Encoding in Wireless Communications,” in Proc. IEEE GLOBECOM

Workshop, Dec 2010, pp. 94–98.

[87] H. Vogt and A. Sezgin, “Secret-key Generation from Wireless Channels: Mind the

Reflections,” in Proc. IEEE International Conference on Communications Work-

shops (ICC), Jun. 2014, pp. 783–788.

[88] T. H. T. Nguyen and J.-P. Barbot, “Secret Key Management and Dynamic Secu-

rity Coding System,” in Proc. IEEE Fifth International Conference on Commu-

nications and Electronics (ICCE), Jul. 2014, pp. 548–553.

[89] L. Yang and G. Giannakis, “Ultra-Wideband Communications: an Idea Whose

Time Has Come,” IEEE Signal Processing Magazine, vol. 21, no. 6, pp. 26–54,

Nov. 2004.

[90] B. Denis, F. Dehmas, M. Pelissier, and L. Ouvry, “La Technologie UWB Radio

Impulsionnelle: un Etat des Lieux des Solutions en Matière de Localisation Haute

Précision et de Transfert de Données à Courte Portée,” Revue de l’Electricité et

de l’Electronique, vol. -, no. 5, pp. 62–74, Dec. 2013.

[91] A. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal,

J. Kunisch, H. Schantz, K. Siwiak, and M. Win, “A Comprehensive Standardized



Bibliography 169

Model for Ultrawideband Propagation Channels,” IEEE Transactions on Anten-

nas and Propagation, vol. 54, no. 11, pp. 3151–3166, Nov. 2006.

[92] N. Amiot, M. Laaraiedh, and B. Uguen, “PyLayers: An Open Source Dynamic

Simulator for Indoor Propagation and Localization,” in Proc. IEEE ICC’13, Bu-

dapest, Hungary, Jun. 2013.

[93] S. Dubouloz, B. Denis, S. de Rivaz, and L. Ouvry, “Performance analysis of ldr

uwb non-coherent receivers in multipath environments,” in IEEE International

Conference on Ultra-Wideband (ICU 2005), Sept 2005.

[94] M. Pezzin and D. Lachartre, “A low Power, Low Data Rate Impulse Radio Ultra

Wide Band Transceiver,” in Proc. FUNEMS’10, Florence, Italy, Jun. 2010.

[95] S. Tmar-Ben Hamida, “Signal-based Security in Wireless Networks,” Ph.D. dis-

sertation, Université de Grenoble, 2012.
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Génération de clés secrétés avec la couche physique
dans les réseaux sans fil décentralisés

Une quantité importante de données personnelles ou sensibles seront produites et échangées par
de nouvelles applications concernant la surveillance environnementale, la domotique, les villes
intelligentes,  l’optimisation  de  la  consommation  énergétique,  les  paiements  sans  fil,  etc.  Ces
applications  seront  supportées  le  plus  souvent  par  des  réseaux  sans  fil  décentralisés  de  type
réseaux de capteurs (WSN), réseaux mobiles ad hoc (MANET), réseaux véhiculaires (VANET) ou
encore réseaux personnels (WPAN). Dans ce sens, de nouvelles technologies et standards sont en
train d'être mis en place: WiFi Direct et l'option D2D dans les standards 5G en cours, IEEE 802.11p
adapté  aux  VANET  et  technologies  de  communications  à  courte  portée  (Near  Field
Communications), Bluetooth-Low Energy, IEEE 802.15.4 ou Zigbee, IEEE 802.15.4a ou IEEE 802.15.6
à base de radio impulsionnelle ultra large bande (IR-UWB)).

Étant donné la nature de ces données et la vulnérabilité des réseaux de communication sans fil aux
différents  types  d'attaques  passives  (par  exemple,  eavesdropping)  ou  actives  (par  exemple,
corruption de l'intégrité des données), les systèmes de communication devraient être protégés par
des mesures de sécurité adaptées en termes d'architecture, complexité de calcul, etc.  La plupart
des solutions cryptographiques assurant la confidentialité et l'intégrité des données reposent sur la
cryptographie symétrique qui demande le partage a priori  d'une clé secrète identique de part et
d'autre du lien de communication et son renouvellement périodique. Le problème ainsi intitulé
« distribution de  clé »  devient  encore  plus  difficile  dans  les  réseaux  décentralisés,  sans
infrastructure ou avec une connectivité et une topologie dynamiques (typiquement, en situation
de mobilité).

Classiquement, on peut utiliser la cryptographie asymétrique (basée sur un couple clé privée – clé
publique) ou des protocoles à base du schéma Diffie-Hellman [Dif76] afin de distribuer une clé
symétrique.  Au-delà  de  la  complexité  calculatoire  élevée  de  ces  méthodes,  la  cryptographie
asymétrique nécessite la mise en place d'un système de distribution des certificats et ne s’avère
donc pas bien adaptée aux réseaux décentralisés. La distribution de clés à l’intermédiaire d'un
centre  de  distribution  de  clés  ou  d'un  serveur  présente  le  même  désavantage  en  termes
d'architecture.  Les  solutions  décentralisées  [Zho08],  comme  par  exemple  la  distribution  des
matériels  cryptographiques  avant  déploiement  afin  de  générer  des  clés  symétriques  après
déploiement,  ne  peuvent  pas  assurer  la  flexibilité  nécessaire  au  renouvellement  de  la  clé
symétrique.  Les nouvelles recherches concernant la sécurité avec la couche physique proposent
des méthodes alternatives pour la distribution des clés secrètes.

La sécurité avec la couche physique  

Contrairement aux méthodes classiques de sécurisation qui reposent sur la difficulté calculatoire
qu'un attaquant rencontrerait en essayant d'inverser les opérations cryptographiques utilisées par
les algorithmes de chiffrage, la sécurité avec la couche physique de transmission radio utilise les



avantages  existants  ou  induits  dans  les  canaux  de  communication  sans  fil.  Des  phénomènes
comme le bruit ou les évanouissements (fading), considérés comme pénalisants pour la fonction
de communication, sont utilisés afin de sécuriser les communications. En 1949, Shannon définit la
sécurité  au sens de la théorie  de l'information à travers la notion d’ambiguïté  qu'un message
crypté induit pour un attaquant qui peut le lire parfaitement [Sha49]. En utilisant une clé sécrète
de même longueur que le message et à l'aide d'opérations XOR, une communication peut être
rendue  parfaitement  sécurisée  indépendamment  de  la  puissance  de  calcul  détenue  par
l'attaquant. L'observation selon laquelle un message parvenant à un attaquant dans un canal de
communication physique ne peut pas être récupéré sans aucune distorsion (a fortiori dans les
canaux sans fil) a contribué à la définition du canal wiretap, ainsi qu’à l'extension de la définition
de sécurité au régime asymptotique vis-à-vis de la longueur du message [Wyn75].  Ainsi,  étant
donné  un  encodage  aléatoire  des  messages  en  émission,  un  attaquant  disposant  d'une  copie
imparfaite de ces messages peut avoir une ambiguïté maximale quand la longueur des messages
tend vers infini. En 1993, Maurer et Ahlswede & Csiszàr étudient les capacités de génération d'un
secret partagé à partir de deux modèles [Mau93] [Ahl93] : i) un canal wiretap auquel on ajoute un
canal public authentifié utilisé pour assurer un retour/échange d’information entre les utilisateurs
légitimes (modèle canal) ; ii) une source aléatoire observée par tous les utilisateurs et un canal
publique  (modèle  source).  Il  se  trouve  que,  grâce  à  la  possibilité  de  traiter  séparément  les
conditions de fiabilité et de confidentialité, le modèle source est plus facilement mis en œuvre.

On  connaît  ainsi  des  solutions  qui  consistent  à  générer  des  clés  secrètes  à  partir  des  seules
propriétés du lien de communication sans fil à protéger. Les terminaux des utilisateurs légitimes
(Alice  et  Bob)  viennent  mesurer  certaines  métriques  radio  (par  exemple,  les  réponses
impulsionnelles du canal de communication reliant les terminaux ou des séquences de puissance
reçue)  afin  d'extraire  une  clé  secrète  commune.  Cette  solution  tire  partie  de  la  réciprocité
bidirectionnelle entre le lien direct et la voie retour, et de la décorrélation "spatiale" des canaux
de communication  sans  fil.  Plus  précisément,  la  réponse  impulsionnelle  du  canal  de
communication entre Bob et Alice est théoriquement identique, au bruit près, à celle du canal de
communication entre Alice et Bob. Alice et Bob peuvent donc séparément élaborer la même clé
secrète à partir d’une estimation du canal de communication les reliant, réalisée de part et d’autre
du lien.  Par ailleurs,  dès lors que le terminal  de l'attaquant (Eve) est situé à plus de quelques
longueurs d'onde de celui de Bob (dans le cas des communications bande-étroite),  le canal de
communication  entre  Alice  et  Eve  (respectivement  entre  Bob  et  Eve)  a  des  caractéristiques
décorrélées de celui entre Alice et Bob (respectivement entre Bob et Alice). Il n'est donc pas aisé
pour Eve de générer la même clé secrète en écoutant simplement ses propres canaux vis-à-vis
d’Alice ou de Bob. Enfin, le canal de communication entre Alice et Bob est généralement sujet à
des variations temporelles de ses caractéristiques, notamment lorsque l'une ou l'autre des parties
se déplace. La clé secrète peut ainsi être renouvelée, ou sa longueur peut être augmentée.

Dans  ce  travail,  on  a  employé  le  modèle  source  de  partage  de  clé  en  l’appliquant  aux
communications  impulsionnelles  ultra  large  bande.  Ces  dernières  permettent  en  effet  de
« capter » une quantité d’information mutuelle suffisamment riche de part et d’autre du lien, du



fait  du  pouvoir  de  résolution  multi-trajets  conféré  par  la  largeur  de  bande  en  réception.
Typiquement, les méthodes de génération de clé à partir  de la couche physique et du modèle
source se décomposent en plusieurs étapes : i) acquisition du canal (mesures, estimations etc.) et
extraction de la partie aléatoire ; ii) quantification des valeurs à travers un encodage binaire ; iii)
réconciliation  des  séquences  binaires  légitimes  en  corrigeant  les  possibles  différences  à  l'aide
d’échanges  sur  le  canal  de  communication  public ;  iv)  amplification  de  privacy,  utilisée  pour
diminuer la quantité d’information qu'un attaquant pourrait détenir ou gagner sur la clé finale. En
la  matière,  on  s'est  particulièrement  intéressé  aux  phases  initiales  d'estimation  et  de
quantification,  ainsi  qu’aux discussions  publiques  à  des  fins  de réconciliation.  On a également
proposé une nouvelle extension  du modèle source à la génération coopérative (entre plusieurs
nœuds) de clés de groupe.
 
Quantification des signaux IR-UWB pour la génération de clé en point-à-point  
Le résultat de l'étape de quantification (ou la clé avant correction d'erreur) est évalué en fonction
de trois  critères  de base :  la  longueur  (préférablement grande),  le  nombre d'erreurs  entre  les
séquences générées de part et d'autre du lien (ou inversement la réciprocité des séquences) et le
caractère  aléatoire,  imprévisible.  Ces  trois  critères  constituent  les  axes  d'un  compromis
caractérisant la génération de clé sur une liaison point-à-point. Le premier chapitre de cette thèse
s'intéresse à plusieurs aspects de ce compromis en utilisant différents types de signaux IR-UWB.

Tout d'abord, à partir de travaux existants [Tma12] sur la génération de clé avec des signaux IR-
UWB directement échantillonnés (à environ 20 GHz), on propose un nouvel algorithme d'encodage
binaire qui  favorise le  caractère aléatoire des séquences finales tout  en observant  les impacts
négatifs sur la réciprocité. Notre algorithme utilise un procédé d’embrouillement (scrambling) en
fonction de l'amplitude et du retard du canal, qui « efface » les motifs binaires induits par la forme
d'onde de l'impulsion de sondage du canal.

Ensuite, on s’intéresse au compromis entre réciprocité et caractère aléatoire des clés, en fonction
de différentes stratégies  de quantification et pour  des réponses  impulsionnelles  (CIR)  bruitées
générées  de  manière  synthétique  à  partir  d'un  modèle  statistique  du  canal  IR-UWB  (IEEE
802.15.4a).  A cette fin,  on introduit une nouvelle métrique permettant d’évaluer un aspect du
caractère aléatoire des clés : la diversité des mots de code binaires générés par l'algorithme de
quantification. Le compromis mentionné est alors illustré par le biais d’une étude d'optimisation
des seuils de quantification pour un nombre fixe de bits par échantillon, d’une part, et avec la
proposition d’une nouvelle méthode de quantification favorisant la diversité des mots de code,
d’autre part.

Finalement, l'impact d’estimations réalistes des CIR IR-UWB sur la réciprocité est mis en évidence
pour  trois  estimateurs représentatifs  :  un  estimateur  à  très  haute  résolution  reposant  sur  un
filtrage adapté à la forme d'onde reçue [Gif11] et deux estimateurs parcimonieux (Compressed
Sensing [Par07] et  Finite Rate of Innovation [Mar04]).  Afin d'améliorer la réciprocité fortement



dégradée  par  les  fausses  détections  de  trajets,  on  propose  également  à  cette  occasion  un
algorithme d'appariement.  

Stratégies discrètes de discussion publique
Le signal radio directement acquis par l'attaquant et/ou les données transitant sur le canal public
représentent  une  fuite  d'information  disponible  pour  l'attaquant.  Dans  les  travaux  précédents
portant  sur  la  génération  de clé  à  partir  des  signaux expérimentaux IR-UWB,  la  réconciliation
consiste à échanger les indices des échantillons choisis  pour  la quantification et à  corriger les
erreurs éventuelles à l'aide d'un code correcteur d'erreur du type Reed-Solomon. Tandis que le
code correcteur peut être adapté en fonction du compromis entre les capacités de correction et la
fuite  d'information,  l'échange des  indices  des  échantillons  en clair  sur  le  canal  public  est  une
spécification fixée du protocole.

Dans le deuxième chapitre de cette thèse, on utilise des signaux IR-UWB obtenus par une méthode
de  modélisation  déterministe  du  canal  (ray  tracing)  pour  mettre  en  évidence  l'effet  de  la
corrélation spatiale des signaux et de l'information publique sur la sécurité des clés obtenues avec
une méthode existante [Tma12]. Ensuite, on présente deux méthodes plus discrètes de discussion
publique :  la première limite la quantité d'information divulguée et la deuxième la masque au
moyen d'autres métriques réciproques caractérisant le lien légitime, telles que des mesures du
temps de vol du signal (RT-ToF).

Génération de clés coopératives
Un des principaux défis pour le modèle source réside dans la collecte de mesures entropiques dans
le cas de réseaux ou de liens peu dynamiques dans le temps. Pour pallier cette difficulté et arriver
de surcroît à générer des clés partagées par plusieurs nœuds, on suggère d'étendre le modèle
source  point-à-point  à  des  réseaux  maillés  de  petite  dimension  en  utilisant  plusieurs  liens
physiques et des transmissions coopératives entre les utilisateurs.
 
L'idée principale du protocole proposé dans le troisième chapitre de cette thèse consiste à générer
une clé de groupe à partir de mesures réalisées sur tous les liens d'un réseau maillé  : des liens
directs -ou adjacents- d'un nœud et des liens non-adjacents perçus par le biais de transmissions
coopératives de la part de ses voisins. On aboutit alors à un problème d'égalisation, qui dans le cas
de l'IR-UWB, prend la forme d'une déconvolution (ici, temporelle). Dans ce chapitre, on se propose
donc de développer et de comparer différentes méthodes de calcul d’un signal porteur du canal
non-adjacent pour son destinataire. Dans ce contexte, on s’intéresse à des méthodes d’estimation
non-Bayésiennes de type maximisation de vraisemblance, qui s'avèrent assez peu efficaces, et à
des méthodes Bayésiennes à base de validation croisée ou d’espérance-maximisation.

Finalement, on compare notre protocole à une solution de distribution utilisant des clés point-à-
point générées à partir de la même couche physique IR-UWB. On montre ainsi que notre méthode
apporte  des  gains  significatifs  en termes  de trafic  et  de  longueur  de clé,  au  détriment  d'une
complexité calculatoire accrue en cas de déconvolution. Néanmoins, l’approche proposée demeure



applicable  à  des  cas  plus  simples  d'égalisation  reposant  sur  des  mesures  de  phase  ou  de
coefficients OFDM.

Conclusion
Après un récapitulatif des grands résultats obtenus, de leurs limitations, ainsi que des perspectives
de recherche qui en découlent, en lien avec le sujet initial sur la sécurité, la thèse se conclut par
quelques  réflexions  personnelles  sur  l'impact  sociétal  des  nouvelles  technologies  de
communication sur l'individu et sur les principes de conception qui pourraient être appliqués afin
d'éviter certains effets ou dérives non désirables. 

Enfin, des travaux techniques connexes et des résultats intermédiaires sont décrits en annexes : i)
quantification des informations réciproques de localisation afin de générer des pseudonymes et de
fournir  une  sur-couche  supplémentaire  d'authentification ;  ii)  stratégies  de  quantification
s’appliquant à des mesures expérimentales issues des dispositifs IR-UWB intégrés.
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