
HAL Id: hal-00952830
https://nantes-universite.hal.science/hal-00952830

Preprint submitted on 27 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Processing for SPARQL Federations with Data
Replication

Gabriela Montoya, Luis-Daniel Ibanez, Hala Skaf-Molli, Pascal Molli,
Maria-Esther Vidal

To cite this version:
Gabriela Montoya, Luis-Daniel Ibanez, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal. Query
Processing for SPARQL Federations with Data Replication. 2014. �hal-00952830�

https://nantes-universite.hal.science/hal-00952830
https://hal.archives-ouvertes.fr

Query Processing for SPARQL Federations with

Data Replication

Gabriela Montoya1, Luis-Daniel Ibáñez1, Hala Skaf-Molli1, and Pascal Molli1

Maria-Esther Vidal2

1 LINA– Nantes University, France
{gabriela.montoya,luis.ibanez,hala.skaf,pascal.molli}@univ-nantes.fr

2 Universidad Simón Boĺıvar, Venezuela
mvidal@ldc.usb.ve

Abstract. Data replication and deployment of local SPARQL endpoints
improve scalability and availability of public SPARQL endpoints, mak-
ing the consumption of Linked Data a reality. This solution requires syn-
chronization and specific query processing strategies to take advantage
of replication. However, existing replication aware techniques in federa-
tions of SPARQL endpoints do not consider data dynamicity. We propose
Fedra, an approach for querying federations of endpoints that benefits
from replication. Participants in Fedra federations can copy fragments
of data from several datasets, and describe them using provenance and
views. These descriptions enable Fedra to reduce the number of selected
endpoints while satisfying user divergence requirements. Experiments on
real-world datasets suggest savings of up to three orders of magnitude.
Keywords: Source Selection, SPARQL Endpoints, Data Replication.

1 Introduction

Query limitations imposed by existing public SPARQL endpoints may be too
restrictive for real-world applications. Data replication and deployment of local
SPARQL endpoints may be a solution to improve data availability and to re-
duce the workload of public endpoints, and thus, make public endpoints ready
for action [2]. However, exposing replicas through local SPARQL endpoints pose
two problems. Firstly, querying replicas may produce obsolete answers, when-
ever Linked Data change[9] and replicas are unsynchronized and diverge with the
original sources [7]. Secondly, using existing federated engines on replicas may
deteriorate their performance because the number of contacted endpoints in-
creases. To illustrate, consider a DBpedia dataset d1, and a federation that only
accesses a public SPARQL endpoint of DBpedia. Using FedX [12], the execution
of a three-triple pattern query with predicates from DBpedia is quite simple be-
cause the query can be exclusively executed in one endpoint. If the same query
were executed in a federation with several endpoints, we would expect better
performance. Surprisingly, this is not the case. Suppose d2 is a replica of d1, and
the federation now includes the public DBpedia SPARQL endpoint and another
local SPARQL endpoint that accesses d2. Since each triple pattern is executed
against both endpoints, the query performance deteriorates.

A recent index-based approach named DAW [11] has been proposed to de-
tect data duplication and to reduce the number of selected sources. The index is
built from data in the federation at a given time. In the previous example, FedX
with DAW would contact only one DBpedia endpoint. However, DAW does not
consider source dynamicity and consequently, the datasets will diverge whenever
data change. In this paper, we propose Fedra, an approach for querying feder-
ations of SPARQL endpoints that takes advantage of data replication. Fedra
relies on knowledge about replicas to reduce the number of selected sources even
in presence of dynamic datasources and divergent replicas. Replicas are defined
as SPARQL views[10] and the containment relationship between views. These de-
scriptions are annotated with data provenance and timestamps that identify the
state of the original datasource when the replica was created. Divergent replicas
will have different timestamps. In the above example, d1 is the original source,
with timestamp t0, while d2 is a replica with the same timestamp, i.e., d1 and
d2 have the same RDF triples. Suppose that d1 inserts or deletes some triples,
then the timestamp of the new state of d1 is t1, where t1 > t0. Since t1 > t0,
d1 and d2 diverge, i.e., d1 has a more recent state than d2. The divergence can
be computed as the number of operations that need to be integrated into the
replica to synchronize it with the original dataset. Depending on the value of the
divergence tolerated by a user, the query can be executed against d2 even if d1 is
not available, at the risk of obtaining an inexact number of answers. Executing
queries against replicas allows to overcome public endpoints limitations [2], but
to avoid generating obsolete answers, divergence has to be controlled.

Fedra solves the source selection problem in presence of divergence, and
it is able to compute the divergence between replicas to decide which sources
should be chosen to answer a query. Fedra does not require access to dataset in-
stances to check overlapping. Thus, it can be used in federations with frequently
updatable datasets where different replicas coexists.

The main contributions of this paper are: i) Endpoint descriptions in terms
of SPARQL views, containment relationships between views, data provenance,
and timestamps; ii) Fedra source selection algorithm that reduces the number
of selected sources while divergence between replicas is controlled; and iii) an ex-
perimental study that reveals the benefits of both exploiting knowledge encoded
in endpoint descriptions and controlling divergence to avoid obsolete results.

The paper is organized as follows: Section 2 presents Fedra and the source
selection algorithm. Section 3 reports our experimental study. Section 4 summa-
rizes related work. Finally, conclusions and future work are outlined in Section 5.

2 Fedra Query Processing for SPARQL Federations with

Replication

Fedra enables federated engines to take advantage of data replication during
query processing. A dataset is a set of RDF triples accessible through a public
SPARQL endpoint. A replica is defined as a view expressed as a CONSTRUCT
SPARQL query that retrieves a dataset fragment, i.e., a subset of the dataset.

2

Replicas can be accessible through local SPARQL endpoints and can be part
of a federation. Figure (1a) illustrates three fragments of a given dataset D: D1,
D2, and D3. D1 and D3 are defined by view V 1, they contain all the triples
of D. D2 is defined by view V 2 and corresponds to a subset of D. There is a
containment relationship among these datasets, i.e., D ⊑V 1 D1, D ⊑V 2 D2, and
D ⊑V 1 D3. The public SPARQL endpoint E1 provides access to D, while local
SPARQL endpoints E3, E4, and E5 access D1, D2, and D3, respectively, as seen
in Figure (1d). In addition, an endpoint can provide access to data from differ-
ent datasets like E5 that combines D3 and F1, as seen in Figure (1d). Public
and local SPARQL endpoints can contribute during federated query processing.
Therefore, workload on public endpoints can be reduced, and local SPARQL
endpoints can replace the public ones whenever they are not available.

s1 p1 o1 .
o1 p2 o2.
s2 p1 o3.
o3 p3 o4

D

D1 D2 D3

V1 V2 V1

s1 p1 o1 .
o1 p2 o2.
s2 p1 o3.
o3 p3 o4

s1 p1 o1 .
o1 p2 o2

s1 p1 o1 .
o1 p2 o2.
s2 p1 o3.
o3 p3 o4

(a) Fragment of Dataset D

F

F1 F2

V3 V4

o2 p4 o5

o1 p4 o5 .
o2 p4 o5.
o3 p4 o6.
o4 p4 o6

o1 p4 o5 .
o2 p4 o5

(b) Fragments of Dataset F

View Definition

V1 CONSTRUCT { ?x p1 ?y . ?y ?p ?z } WHERE { ?x p1 ?y . ?y ?p ?z }

V2 CONSTRUCT { ?x p1 ?y . ?y p2 ?z } WHERE { ?x p1 ?y . ?y p2 ?z }

V3 CONSTRUCT { o2 p4 ?x } WHERE { o2 p4 ?x }

V4 CONSTRUCT { ?x p4 o5 } WHERE { ?x p4 o5 }

(c) Views definitions

Dataset D F D1 D2 D3 F1 F2

Endpoint E1 E2 E3 E4 E5 E5 E6

(d) Endpoints contents

Fig. 1: Example of Different Fragments and Containment Relationships

3

Listing 1: Query Q1

SELECT DISTINCT ? s ?o ? r
WHERE {

? s p1 ?o .
?o p4 ? r

}

Given a SPARQL query Q, we are interested in the following source selection
problem: selecting the SPARQL endpoints that produce the most complete an-
swer for Q while avoiding the selection of: i) public endpoints, and ii) multiple
local endpoints that retrieve the same answer for a given sub-query of Q.

For the first triple pattern of query in Listing 1, Fedra can select either
endpoint E3 or endpoint E5 because they provide access to data defined by the
same view. Endpoints E5 and E6 provide access to fragments F1 and F2 which
are defined by different views, and they may have different instantiations for the
second triple pattern; thus, both endpoints E5 and E6 need to be selected. To
reduce the number of selected sources, E5 will be chosen instead of E3 because it
will also be used for the second triple pattern. This choice gives the opportunity
to the query engine of reducing the number of contacted endpoints while it
maximizes the number of operations performed by an endpoint.

2.1 Describing Local SPARQL Endpoints

In a Fedra federation, datasets accessible through local SPARQL endpoints
are described explicitly in terms of views and implicitly, in terms of containment
relationships between these views. In addition, they are annotated with data
provenance and timestamps. A timestamp states the date when the fragment
data is originally published in the public dataset.

Listing 2: Endpoint description

[] a sd : S e r v i c e ;
sd : e ndpo i n tU r l <ht tp : // myExampleEndpoint / s pa r q l >;
sd : f ragment [

sd : d e f i n i t i o n ”CONSTRUCT { ?d b i o 2 r d f : u r l ?u }
WHERE { ?d b i o 2 r d f : u r l ?u }” ;

sd : o r i g i n <ht tp : // ch eb i . b i o 2 r d f . o rg / s pa r q l> ;
sd : date ”2000−01−12” ;] ;

sd : f ragment [
sd : d e f i n i t i o n ”CONSTRUCT { ?d b i o 2 r d f : u r l ?u }

WHERE { ?d b i o 2 r d f : u r l ?u }” ;
sd : o r i g i n <ht tp : // kegg . b i o 2 r d f . o rg / spa r q l> ;
sd : date ”2000−05−13” ;] ;

]

4

s1 p1 o1 .
o1 p2 o2.
s2 p1 o3.
o3 p3 o4.
o1 p2 o7

D@T+2

D1@T+1 D2@T
D3@T+2

V1
V2

V1

s1 p1 o1 .
o1 p2 o2.
s2 p1 o3.
o3 p3 o4.
o1 p2 o7.
o3 p3 o8

s1 p1 o1 .
o1 p2 o2

s1 p1 o1 .
o1 p2 o2.
s2 p1 o3.
o3 p3 o4.
o1 p2 o7.
o3 p3 o8

(a) Fragments of Dataset D

Date Insertions

T s1 p1 o1
o1 p2 o2
s2 p1 o3
o3 p3 o4

T+1 o1 p2 o7

T+2 o3 p3 o8

(b) Inserts for D

Fig. 2: Coexisting versions of fragments of dataset D

2.2 Updating Public SPARQL Endpoints

Data accessible through public SPARQL endpoints can be updated, and diver-
gence could exist with their replicas in the local endpoints. For example, DB-
pedia data frequently change, and existing replicas that do not integrate these
last changes will be divergent with data in DBpedia. Fedra can select local
endpoints to obtain answers but with some divergence, or it can choose a pub-
lic SPARQL endpoint, if this is available. Although public SPARQL endpoints
offer access to the freshest data, they may time out executing complex or non-
selective queries. Therefore, selecting possible divergent local endpoints could be
a reliable choice whenever divergence is controlled.

Consider datasets from Figure (1a), where triples k1=(o1 p2 o7) and k2=(o3
p3 o8) are inserted in D after the fragments are created. Figure (2a) presents
a possible scenario where dataset D1 has been created at timestamp T+1. D1
contains k1 but not k2. Dataset D2 is created at the timestamp T , and it does
not reflect the updates of D. Finally, dataset D3 is created at the timestamp
T+2, therefore, it reflects the last state of D, i.e., D3 has the freshest data of the
public endpoint. As the triple k2 is not available through endpoint E3, but it is
available through endpoint E5, then there is a divergence between the dataset
D and its fragments D1 and D2 at T+2.

Divergence is an editing distance between a public dataset and a replica. It
can be defined as the number of the insert and delete operations that need to
be applied to the replica in order to synchronize it with the original dataset. An
operation in the public data introduces divergence with a replica, whenever it
inserts or deletes a triple k that is relevant to a view V of the replica, i.e., there
is an instantiation of V that includes k. In the above example, triple k1=(o1 p2

5

o7) inserted into D at T+1 is relevant to V 1 and V 2, while triple k2=(o3 p3 o8)
inserted to D at T+2 is only relevant to view V 1. However, D1 and D2 do not
include k2 and k1, respectively. Thus, only one insertion needs to be performed
on D1 and D2 to reach convergence, i.e., their divergence is 1. Divergence of D3
is 0 because D3 is up to date with D. In general divergence of a replica D1 with
respect to dataset D can be defined as in Equation 1, where k is a triple in D.

Divergence(D1, D) = Σk∈inserts(D)∧date(D1)<date(k)≤date(D)1
+Σk∈deletes(D)∧date(D1)<date(k)≤date(D)1 (1)

Divergence defined in Equation 1 is for replicas of D that contain all its triples.
If a replica only includes a subset of D, i.e., it is defined by a view that does not
retrieve all its triples, then divergence can be defined as in Equation 2. Predicate
matches(p, V) is satisfied if triple k is relevant for view V .

Divergence(D1, D) = Σk∈inserts(D)∧date(D1)<date(k)≤date(D)∧matches(k,V)1
+Σk∈delete(D)∧date(D1)<date(k)≤date(D)∧matches(k,V)1

(2)
Live updates of DBpedia3 can be used to compute divergence between a

replica of DBpedia and the public DBpedia relying on the timestamp of the last
update performed at a given time. If we consider a version of DBpedia of May
13, 2013 and a replica defined by view V whose last update was done on May
1st, 2013, then divergence can be computed as the sum of the number of inserts
and deletes performed during days 2-13 of May that are relevant to view V .

2.3 Source Selection Algorithm

Algorithm 1 selects the endpoints that can answer each triple pattern in a query,
and the views that define the datasets accessible through these endpoints (e and
v in line 7). The function canAnswer can be implemented using an ASK query for
dynamic data, or relying on view definition for more stable data. origin function
is used to determine if one of the already considered endpoints provides the same
data that e for the fragment defined by v; in that case, e is included in fragment

as a valid alternative to obtain data provided by the other members of fragment

(lines 11-13). If the data is already provided by another endpoint f , then it is
not necessary to consider e (lines 16-17, 20-21). If the data provided by a set
of endpoints fragment is already provided by e, then it is enough to query e

and fragment can be safely removed from the endpoints to query (lines 14-15,
18-19). When the user provides a threshold of divergence TD, then this can be
included in line 7 as divergence(e, v) ≤ TD. This algorithm produces a list whose
elements are list of equivalent endpoints under a given view. This means that
they offer the same fragment defined by the view, then during execution only
one of them needs to be contacted. And different elements of this resulting list
correspond to different fragments that should be considered in order to obtain

3 http://live.dbpedia.org/liveupdates/

6

an answer as complete as possible, modulo the considered endpoints and the
allowed divergence threshold.

After the source selection per triple pattern is done, a source selection for
the whole query is performed, this is presented in Algorithm 2. We can perform
the source selection using an heuristic for the finding the minimal set cover [6].
In the set cover problem, given a set of elements S and a collection of subsets of
set C, the goal is to obtain a collection C ′, C ′ ⊆ C, such that all the elements
in S belong to at least one element in C ′, and C ′ has the minimal size possible.

Algorithm 1 Triple Pattern Source Selection algorithm

Input: Q: SPARQL Query
Input: Es: set of Endpoints
Input: views : Endpoint→ set of views ⊲ views offered by each endpoint
Input: origin : Endpoint × view → set of Endpoint ⊲ endpoints from which the content of

each view is taken
Input: overloadedEndpoints : set of Endpoint ⊲ endpoints that should not be selected
Input: containedIn : view → set of view ⊲ containment relation among views
Output: D: Dictionary From Triple Pattern to List of List of Endpoints ⊲ endpoints where each

fragment of each triple pattern can be found
1: function tripleSourceSelection(Q,Es, views, origin, overloadedEndpoints, containedIn)
2: for each k ∈ tp(Q) do ⊲ k is a triple pattern in Q
3: endpoints ← ∅
4: for each e ∈ Es do

5: for each v ∈ views(e) do

6: if canAnswer(e, v, k) then

7: include ← true
8: for each fragment ∈ endpoints do

9: (f, w)← getOne(fragment)
10: if origin(e, v) = origin(f, w)∧v ∈ containedIn(w)∧w ∈ containedIn(v)

then

11: fragment.add((e, v))
12: include← false
13: else if origin(e, v) = origin(f, w) ∧ v ∈ containedIn(w) then

14: endpoints.remove(fragment)
15: else if origin(e, v) = origin(f, w) ∧ w ∈ containedIn(v) then

16: include← false
17: else if f ∈ origin(e, v) ∧ origin(e, v) 6= origin(f, w) then

18: endpoints.remove(fragment)
19: else if e ∈ origin(f, w) ∧ origin(e, v) 6= origin(f, w) then

20: include← false
21: end if

22: end for

23: if include then

24: n ← {(e, v)}
25: endpoints.add(n)
26: end if

27: end if

28: end for

29: end for

30: D(k) ← removeOverloadedIfPossible(endpoints, overloadedEndpoints)
31: end for

32: return D
33: end function

Consider a triple k1, such thatD(k1) = {(v1, {e1, e2}), (v2, {e3}), (v3, {e4, e5})},
this means that to obtain all the possible bindings for k1, then it should be eval-
uated in at least one endpoint of each of the sets, for example, evaluating it in
e1, e3 and e5 would be enough. We can model each endpoint by one subset of

7

the collection C, and the elements of each subset are the triples that can be eval-
uated by the corresponding endpoint. In order to respect the different fragments
(three in the example), we include as many different elements in S as different
fragments should be considered (three in the example). In the example: k11 ∈ e1,
k11 ∈ e2, k12 ∈ e3, k13 ∈ e4 and k13 ∈ e5 (lines 2-13) The selected collection
defines the endpoints where each triple pattern should be evaluated (lines 15-24).
The overloadedEndpoints variable allows to restrict the set of endpoints where
the triples are evaluated.

Algorithm 2 Source Selection algorithm

Input: Q: SPARQL Query; Es: set of Endpoints; views : Endpoint → set of views;
origin : Endpoint × view → Endpoint; overloadedEndpoints : set of Endpoint;
overloadedEndpoints : set of Endpoint; containedIn : view → set of view.

Output: E: Dictionary From Triple Pattern to List of Endpoints.
1: usableEndpoints← Es− overloadedEndpoints
2: D ← tripleSourceSelection(Q, usableEndpoints, views, origin, overloadedEndpoints, con-

tainedIn)
3: S ← ∅
4: C ← ∅ ⊲ C(e) has as default value the empty set
5: for each k ∈ tp(Q) do ⊲ k is a triple pattern in Q
6: i← 0
7: for each es ∈ D(k) do

8: for each e ∈ es do

9: C(e)← C(e)
⋃
{ki}

10: end for

11: S ← S
⋃
{ki}

12: i← i + 1
13: end for

14: end for

15: C′ ← MinimalSetCovering(S,C)
16: endpoints← getEndpoints(C′)
17: E ← ∅
18: for each k ∈ tp(Q) do

19: e← ∅
20: for each es ∈ D(k) do

21: selected← es
⋂

endpoints
22: e← e

⋃
{takeOne(selected)}

23: end for

24: E(k)← e
25: end for

3 Experiments

We formulate the following research questions for a given SPARQL query: RQ1) can
Fedra reduce the number of selected sources?, RQ2) can Fedra reduce the
number of selected public endpoints?, RQ3) can Fedra select sources that pro-
duce more complete answers?, and RQ4) Fedra can select sources that satisfy
a user threshold of divergence. How does increasing the threshold affect the
completeness of the answer?.
Datasets and Query Benchmarks: we used the datasets Diseasome and Pub-
lication 4, and executed 89 queries where 59 queries are those executed in [11]

4 https://sites.google.com/site/dawfederation/data-sets, January 2014.

8

and 30 conjunctive queries that are composed of a larger number of triple pat-
terns. The queries are composed of single triple pattern queries (ST), star shaped
queries of 2-6 triple patterns (2S-6S), and path queries of 2-4 triple patters (2P-
4P). Contents of these datasets were characterized using conjunctive star-shaped
CONSTRUCT queries such that the union of their evaluation provides the whole
dataset. The views were randomly produced such that they have between two
and ten triple patterns, and they contain as much overlap as possible, i.e., triples
are considered for all the views they can match. For the Diseasome federation
58 views were generated, and 508 views for the Publication federation. In order
to reproduce a realistic scenario, we consider that few views are highly used
and many views are rarely used. Hence the views were sorted according to their
popularity, i.e., for how many queries they are useful, and distributed using a
power law distribution over a set of endpoints 5. Samples of the power law distri-
bution determines in how many endpoints each view is assigned, and a uniform
distribution is used to assign them to endpoints. Parameters of the power law
distribution are Xmin=2 and α=2.5. The number of local endpoints for the Dis-
easome federation is 18, and for Publication is 345. Virtuoso6 endpoints are used,
and timeouts were set up to 1,800 secs. and 100,000 tuples. Table (1a) shows
data distribution over ten of the endpoints of the federation for Diseasome, and
Listings (3) and (4) present the views that define two fragments of Diseasome 7.

Divergence among replicas: We have created two divergent datasets of Dis-
easome: Diseasome1 and Diseasome2. Diseasome1 is composed of 90% of the
Diseasome tuples, while Diseasome2 has just 80% of these triples. The removed
triples were selected following an uniform distribution over all the views. In the
divergent setup the included data in each endpoint was uniformly taken from
Diseasome, Diseasome1, and Diseasome2. The number of views that belong to
each dataset per endpoint in this setup is shown in Table (1b).

Listing 3: view49

CONSTRUCT WHERE {
? x1 owl : sameAs ? x2 .
? x1 d i seasome : gene Id ? x3 .
? x1 r d f s : l a b e l ? x4 .
? x1 d i seasome : b i o2 rd fSymbo l ? x5 .
? x1 r d f : t ype ? x6 .
? x1 d i seasome : hgnc Id ? x7

}

Listing 4: view27

CONSTRUCT WHERE {
? x1 r d f : t ype ? x2 .
? x1 d i seasome : omimPage ? x3

}

5 Library https://github.com/Data2Semantics/powerlaws for power law distribu-
tion sampling.

6 http://virtuoso.openlinksw.com/, November 2013.
7 The data distribution of all the endpoints that conform the Federations and the
views that describe all their replicated fragments are available at the project website:
https://sites.google.com/site/fedrasourceselection/

9

Table 1: Data Distribution over ten endpoints, definitions of three fragments, and
number of views that belong to each of the coexisting datasets in the divergent
setup composed of Diseasome (D), Diseasome1 (D1), and Diseasome2 (D2).

(a) Data Distribution per Endpoint

Endpoint Included Fragments

E1 view49,view11,view27,view22,view18,view13,view28,view33
E2 view16,view10,view45,view28,view26,view7,view11,view37,view33
E3 view12,view31,view5,view2,view49,view6,view22,view44,view58,

view20,view43,view11,view18,view33,view26
E4 view57,view53,view24,view38,view40,view1,view33
E5 view51,view43,view9,view32,view11,view2,view34,view33
E6 view54,view34,view52,view42,view23,view6,view56,view41,view12,

view11,view33,view21,view3
E7 view23,view10,view53,view36,view38,view11,view40,view58,view55,

view33,view46,view21
E8 view25,view5,view1,view24,view35,view4,view31,view22,view33
E9 view23,view9,view28,view27,view32,view18,view42,view11,view6,view33
E10 view16,view10,view1,view21,view29,view19,view6,view33,view41

(b) Configuration of Divergent setup

Endpoint E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18

D 4 3 6 1 3 5 4 2 1 3 4 6 2 3 3 3 7 6
D1 1 1 6 4 2 3 6 1 3 1 7 3 4 6 3 4 3 5
D2 3 5 3 2 3 5 2 6 6 5 7 4 3 2 4 3 3 5

Implementations: Fedra is implemented in Java 1.7 and the Jena 2.11.0 li-
brary 8. Fedra produces SPARQL 1.1 queries where each triple pattern is anno-
tated with a service clause that indicates where it will be executed. These queries
are posed to FedX3.09, one state-of-the-art SPARQL 1.1 federated engine.

Evaluation Metrics: i) Number of Triple-Wise Selected Public Endpoints (SPE):
corresponds to the sum of the number of times the public endpoint has been se-
lected per triple pattern. ii) Number of Triple-Wise Selected Sources (NTWSS):
corresponds to the sum of the number of different sources that has been selected
per triple pattern. iii) Execution Time (ET): corresponds to elapsed time since
the query is posed by the user and the answers are completely produced. It is
detailed in source selection time (SST), and query execution by the underlying
engine (ETUE). Time is expressed in seconds (secs.). A timeout of 300 secs. has
been enforced for ETUE. SST was measured using System.currentTimeMillis()
provided by Java and divided by 1000, and ETUE corresponds to the absolute
wall-clock system time as reported by the Python time.time() function. iv) Re-

8 http://jena.apache.org/, November 2013.
9 http://www.fluidops.com/fedx/, November 2013.

10

call (R): corresponds to the size of the intersection between the obtained answers
and the expected answers divided by the number of expected answers; where the
expected answers are the ones obtained from an endpoint containing the whole
dataset. v) Duplicates (Du): corresponds to the percentage of duplicates present
in the answer. This is computed as (1 - precision)×100, where precision is defined
as the size of the intersection between the obtained answers and the expected
answers divided by the number of obtained answers; duplicates are considered.
The range of Du is [0-100], where 0 means that the answer does not contain
duplicates, while values close to 100 indicate that duplicate values outnumber
the non-duplicate values. vi) Divergence (Div): corresponds to the total number
of operations, insertions and deletions, that need to be performed in the rele-
vant replicas to integrate the operations performed in the public dataset that
have not been yet included in the relevant replicas. The divergence can be mea-
sured in a course-grained way considering the operations over the whole dataset,
or fine-grained way considering the operations over a relevant fragment of the
dataset. We have use a fine-grained measurement. For these metrics, we report
the average value obtained per query type.

3.1 Reduction of the Number of Selected Sources

We ran Fedra to compute the selected sources to answer our benchmark queries
on the Diseasome and Publication federations, and thus, answer our research
questions RQ1 and RQ2. We used FedX to generate the execution plans of the
queries, and from them compute the number of selected sources. We hypothesize
that Fedra is able to reduce the number of selected sources and the number of
selected public endpoints, as far as the containment relationship holds among
the replicas and the original dataset. Tables (2a) and (2b) show the NTWSS for
Fedra and FedX. These results suggest that our hypothesis are true, and Fedra

is able to reduce the number of selected sources up to two orders of magnitude,
and the number of selected public endpoints is zero for all the queries but one.
We notice that these savings are larger for federations with a large number of
endpoints like Publication, and specially for queries with many triple patterns.

3.2 Increase of the Recall

We use FedX to run our benchmark queries on the Diseasome and Publication
federations, and SPARQL 1.1 queries annotated with service clause according
to sources selected by Fedra. To answer our research question RQ3, we hy-
pothesize that Fedra is able to increase the recall (R) of the obtained answers,
while keeping duplicates (Du) relatively low. Tables (2a) and (2b) show the R
and Du for Fedra and FedX. These results suggest that our hypothesis holds,
and Fedra is able to increase recall while producing relatively few duplicates.
We notice that these savings are larger for federations with a large number of
endpoints like Publication, and specially for queries with many triple patterns.

11

Table 2: Number of Triple-Wise Selected Public Endpoints (SPE), Triple-Wise
Selected Sources (NTWSS), Execution Time (ET), Recall and Duplicates (Du)
using Fedra and FedX for Diseasome and Publication Federations. For Fedra,
ET is detailed in Source Selection Time (SST) and Query Execution Time by
the Underlying Engine (ETUE). Relevant results are highlighted in bold.

(a) Diseasome

Query Fedra FedX
Type SPE NTWSS SST ETUE Recall Du SPE NTWSS ET Recall Du

ST 0.00 1.60 1.60 1.28 1.00 21.80 1.00 17.80 1.94 0.88 83.60
2P 0.00 3.00 3.00 7.15 1.00 48.50 2.00 35.75 96.79 0.50 25.00
3P 0.00 3.80 3.80 10.38 0.80 59.60 3.00 53.60 38.50 0.21 39.00
4P 0.00 6.00 6.00 162.44 0.02 48.50 4.00 76.00 324.74 0.00 0.00
2S 0.00 4.00 4.00 11.64 1.00 48.20 2.00 37.00 169.47 0.40 18.00
3S 0.40 6.00 6.00 123.17 0.60 34.60 3.00 42.40 174.81 0.40 39.40
4S 0.00 7.00 7.00 138.97 0.60 0.00 4.00 75.60 240.97 0.00 0.00
5S 0.00 9.80 9.80 193.15 0.40 0.00 5.00 93.40 253.70 0.00 0.00
6S 0.00 11.40 11.40 284.58 0.20 0.00 6.00 112.40 257.44 0.00 0.00

(b) Publication

Query Fedra FedX
Type SPE NTWSS SST ETUE Recall Du SPE NTWSS ET Recall Du

ST 0.00 2.20 26.43 3.26 1.00 14.80 1.00 126.60 7.99 0.92 85.40
2P 0.00 2.29 5.85 19.16 1.00 30.57 2.00 3.60 99.84 0.34 36.57
3P 0.00 7.86 3.81 51.78 0.86 22.00 3.00 321.57 261.55 0.14 14.29
4P 0.00 4.25 4.84 4.89 1.00 12.50 4.00 285.75 62.55 0.50 50.00
2S 0.00 3.20 33.44 26.65 0.80 36.00 2.00 470.80 129.66 0.00 0.00
3S 0.00 4.20 40.12 66.21 0.60 0.20 3.00 634.40 241.37 0.00 0.00
4S 0.00 5.20 108.48 190.20 0.40 0.00 4.00 1352.60 316.32 0.00 0.00
5S 0.00 6.40 134.86 137.06 0.60 0.00 5.00 1528.00 300.17 0.00 0.00
6S 0.00 8.60 138.42 140.79 0.60 0.00 6.00 1811.60 251.82 0.00 0.00

3.3 Answering Queries in Presence of Divergent Data

We use FedX to run our benchmark queries and SPARQL 1.1 queries annotated
with service clause according to sources selected by Fedra for the Diseasome
federation with divergence and thresholds of 0% and 25%. To answer our research
question RQ4, we hypothesize that as the threshold increases, the obtained recall
may decrease. Table (3) reports NTWSS, ET, Recall and Duplicate values for
Fedra and FedX. These results suggest that our hypothesis is true in most of
the cases but not in all. When threshold increases, the recall should decreases.
However, when this does not hold, increasing the threshold allows to either:
i) reduce the number of selected sources, or ii) select most suitable sources. This
happens in query types 3P, 4P, and 6S where the number of queries that time
out is reduced from 3, 2, and 5 to 1, 1, and 4, respectively.

12

Table 3: Number of Triple-Wise Selected Public Endpoints (SPE), Triple-Wise
Selected Sources (NTWSS), Execution Time (ET), Recall (R) and Duplicates
(Du) using Fedra and FedX for Diseasome federation with divergence and
thresholds of 0 and 25%. For Fedra, ET is detailed in Source Selection Time
(SST) and query Execution Time by the Underlying Engine (ETUE).

(a) Threshold = 0%

Query Fedra

Type SPE NTWSS SST ETUE R Du

ST 0.80 1.40 1.33 1.29 1.00 19.00
2P 2.00 3.25 2.53 153.83 0.50 24.50
3P 2.80 4.60 5.93 193.42 0.30 30.00
4P 3.50 6.00 7.56 302.29 0.00 0.00
2S 1.60 4.00 2.33 73.13 0.79 29.60
3S 2.60 4.60 3.96 13.03 0.96 48.60
4S 3.00 6.20 7.86 95.71 0.58 0.00
5S 4.20 8.00 9.02 190.70 0.30 0.00
6S 5.20 10.00 10.31 300.13 0.00 0.00

(b) Threshold = 25%

Fedra

SPE NTWSS SST ETUE R Du

0.20 1.40 1.42 1.17 0.88 20.00
0.25 3.00 2.48 154.57 0.49 10.75
0.40 3.80 5.84 64.29 0.59 41.20
0.00 6.00 7.20 155.40 0.02 48.50
0.00 4.80 2.67 12.63 0.72 49.20
1.00 5.80 3.90 182.01 0.20 0.00
0.00 7.20 7.81 85.96 0.32 0.00
0.00 10.00 9.14 191.16 0.20 0.00
0.00 11.80 10.79 275.54 0.15 0.00

(c) FedX

Query FedX
Type SPE NTWSS ET R Du

ST 1.00 14.00 1.72 0.91 75.80
2P 2.00 32.75 79.23 0.50 24.75
3P 3.00 51.00 34.55 0.25 35.20
4P 4.00 76.00 304.61 0.00 0.00
2S 2.00 35.60 142.88 0.60 37.20
3S 3.00 34.20 152.60 0.60 59.00
4S 4.00 75.60 300.14 0.00 0.00
5S 5.00 93.40 300.62 0.00 0.00
6S 6.00 112.40 302.10 0.00 0.00

4 Related Work

The Semantic Web community has proposed different approaches to consume
Linked Data from federations of endpoints [1, 4, 8, 12]. Although source selection
and query processing techniques have successfully implemented, none of these
approaches is able to exploit information about data replication to enhance per-
formance and answer completeness. Recently Saleem et al. propose DAW [11],
a source selection technique that relies on data summarization to describe RDF
replicas and thus, reduces the number of selected endpoints. For each triple
pattern in a SPARQL query, DAW exploits information encoded in source sum-
maries to rank relevant sources in terms of how much they can contribute to the
answer. Source summaries are expressed as min-wise independent permutation

13

vectors (MIPs) that index all the predicates in a source. Although properties of
MIPs are exploited to efficiently estimate the overlap of two sources, since Linked
Data can frequently change, DAW source summaries may need to be regularly
recomputed to avoid obsolete answers. To overcome this limitation, Fedra pro-
vides a more abstract description of the sources which is less sensible to data
changes; data provenance and timestamps are stored to control divergence.

Divergence and data replication, in general, have been widely studied in dis-
tributed systems and databases. There is a fundamental trade-off between data
consistency, availability and tolerance to failures. In one extreme, distributed sys-
tems implement the ACID transactional model and ensure strong consistency [5].
Although ACID transactional models have been extensively implemented, it has
been shown that in large-scale systems where data is partitioned, ensuring ACID
transactions and mutual consistency is not feasible [5]. Based on these results,
Fedra does not rely on strong consistency that would constrain Linked Data
participants. Contrary, Fedra exploits source descriptions to reduce the number
of contacted endpoints while satisfies divergence thresholds. Thus, depending on
the divergence tolerated by a user, a query can be performed against replicas if
accessing the original source is not possible.

5 Conclusions and Future Work

We presented Fedra a source selection approach that takes advantage of repli-
cated data, and reduces the number of selected endpoints given a threshold of
divergence. A lower value of divergence allows query engines to produce fresher
answers but at the risk of failing to get answers. Contrary, a higher value risks
engines to retrieve answers that are obsolete, while chances of producing answers
increases as the space of possible selected sources is larger.

In the future, we plan to consider a finer-grained granularity of divergence.
Instead of considering divergence of a replica, we will compute divergence for
specific predicates, e.g., divergence of predicates that represent links between
datasets. In addition, we plan to integrate DAW with Fedra to handle replicas
with missing descriptions.

Acknowledgments. We thank Andreas Schwarte, who provided us with a
version of FedX that prints the execution plans.

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: An
adaptive query processing engine for sparql endpoints. In Aroyo et al. [3], pages
18–34.

2. C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. Sparql web-
querying infrastructure: Ready for action? In H. Alani, L. Kagal, A. Fokoue, P. T.
Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy, C. Welty, and K. Janowicz,
editors, International Semantic Web Conference (2), volume 8219 of Lecture Notes
in Computer Science, pages 277–293. Springer, 2013.

14

3. L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. F. Noy, and
E. Blomqvist, editors. The Semantic Web - ISWC 2011 - 10th International Se-
mantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part
I, volume 7031 of Lecture Notes in Computer Science. Springer, 2011.

4. C. Basca and A. Bernstein. Avalanche: Putting the spirit of the web back into
semantic web querying. In A. Polleres and H. Chen, editors, ISWC Posters&Demos,
volume 658 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

5. E. A. Brewer. Pushing the cap: Strategies for consistency and availability. IEEE
Computer, 45(2):23–29, 2012.

6. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill,
2008.

7. P. Dourish. The parting of the ways: Divergence, data management and collabo-
rative work. In ECSCW, pages 213–, 1995.

8. O. Görlitz and S. Staab. Splendid: Sparql endpoint federation exploiting void
descriptions. In O. Hartig, A. Harth, and J. Sequeda, editors, COLD, volume 782
of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

9. T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan. Observing
linked data dynamics. In P. Cimiano, Ó. Corcho, V. Presutti, L. Hollink, and
S. Rudolph, editors, ESWC, volume 7882 of Lecture Notes in Computer Science,
pages 213–227. Springer, 2013.

10. W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang. Rewriting queries on
sparql views. In WWW, pages 655–664, 2011.

11. M. Saleem, A.-C. N. Ngomo, J. X. Parreira, H. F. Deus, and M. Hauswirth. Daw:
Duplicate-aware federated query processing over the web of data. In H. Alani,
L. Kagal, A. Fokoue, P. T. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F.
Noy, C. Welty, and K. Janowicz, editors, International Semantic Web Conference
(1), volume 8218 of Lecture Notes in Computer Science, pages 574–590. Springer,
2013.

12. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization
techniques for federated query processing on linked data. In Aroyo et al. [3], pages
601–616.

15

